• Title/Summary/Keyword: chemical transportation

Search Result 442, Processing Time 0.027 seconds

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Development of Engineering Model for a Barge Moulted Seabed Sludge Treatment Plant (해저 오염 퇴적층 복원 처리를 위한 BMP 패키지 기술 개발)

  • 배준홍;하문근;어경해;김승혁;박찬후;김병우;구근회;윤철원
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.8-13
    • /
    • 2003
  • Soil, ground water, and sea bed are exposed to a continuous accumulation of polluted materials, causing serious environmental damage. It has been reported that such pollution causes a massive mortality of fish stock in rivers due to the resuspension of toxic chemicals, occurring during strong wind conditions. Therefore, it becomes apparent that there is an immediate demand for the restoration treatment of polluted river bed (or sea bed) sediment layers. Pollution levels of major rivers and ports, such as Paldang, Kyungan rivers, and Masan port, are becoming of great public concern, and are posing a serious environmental threat. In particular, the pollution of the Shi-hwa river has become a nation wide issue for the last few years. In spite of such public concern, the pollution levels of such rivers or ports are worsening everyday. In this study, an environmentally sound engineering package is introduced that helps to restore the polluted river bed or sea bed sediments. This engineering package consists of a suction facility, followed by a series of mechanical, chemical, and biological treatment units. The suction facility is designed to minimize secondary pollution that occurs from the resuspension of toxic materials during suction. The sea bed cleaning engineering package is designed to be installed on the top of a floating barge. Such a combination of environmental plant and shipbuilding technology provides a cost-effective solution, minimizing the transportation between suction and treatment facilities.

A Study on Frequency Dependence on Dielectric Properties of Silicone Rubber Sheets (실리콘 고무 시트의 유전특성에 미치는 주파수 의존성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • In this study, the following results were obtained by analysis of electric properties with FT-IR, DSC, XRD, and SEM, in the range of temperature 30~160℃ and frequency 0.1~200 kHz, when filling agent (0~100 phr) and silicone oil (0~12 phr) were added to raw silicone rubber. In the case of 100 phr mixed samples, the relative dielectric constant εr gradually decreased from 4.3 to 3.96 as frequency increased, and the dielectric loss tan δ decreased to 0.01 at 300 Hz, then increased to 0.022 at 30 kHz, then decreased to 200 kHz. The FT-IR analysis identified the same binding structure according to the chemical composition of added silica (SiO2). Through DSC analysis, we could determine the change of heat quantity and the glass transition temperature of each specimen. In the XRD analysis, it was found that the images SiO2, TiO2, and Fe2O3 appeared for specimens with 0%, 50% and 100% filling agent. Finally, the SEM analysis confirmed that particles of 0.5 to 1.5 ㎛ size with silica (SiO2) mixing were dispersed evenly.

A Study on Lubricant additive of DME Common-rail Vehicle (DME 커먼레일 차량의 윤활향상제에 관한 연구)

  • Park, JungKwon;Kim, Hyunchul;Jeong, SooJin;Chon, MunSoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

Development of a Washing Machine for Paprika (착색단고추 세척기 개발)

  • Kim, Young-Keun;Yoon, Hong-Sun;Choe, Jung-Seub;Lee, Young-Hee
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.361-368
    • /
    • 2011
  • The amount of export of paprika has been increased rapidly in recent years. Therefore, its cultivation area has greatly increased in Korea according to current consumer's attraction. Moreover, it becomes one of the major exporting products while it recorded 53 million dollars, in 2009 resulting in 40% of the total vegetables export. Most of the products are exported to Japan, but it is necessary to prolong the quality preservation periods to export paprika to nations like U.S.A. or EU. However, to encourage an export to many countries, washing and disinfection became more important to deal with longer transportation and medical inspection. The non-chemical use is very important due to stronger regulation of safety to agricultural production. Accordingly, this study was performed to determine the optimum conditions and develop a prototype washing machine, hot water washing of paprika. The results were as follows : The working performance of the prototype was 938 kg/hr, and which was 1.5 times higher than the conventional air gun type washing machine. The operation cost of prototype was 30 won/kg, and 56% of the cost was reduced when compared with air gun type washing machine.

Corrosion Behaviour of DH36 Steel Used for Oil Platform in Splash Zones

  • Liu, J.G.;Li, Y.T.;Hou, B.R.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.190-194
    • /
    • 2015
  • The splash zone is the most corrosive area of the marine environment, and the corrosion of steel structures exposed in this area is a serious concern. DH36 steel is one of most commonly used steels for offshore oil platforms in China, and its corrosion behaviour in splash zones was studied in this paper. Polarization curves were obtained from the corroded steel exposed in this area while the morphologies and rusts of the rust steel were characterized using scanning electron microscopy and X-ray diffraction. Double rust layers were formed in the splash zone. The inner layer contained magnetite and fine flaky lepidocrocite, and the outer layer was composed of accumulated flaky lepidocrocite and a small amount of goethite. In the wet period, the iron dissolved and reacted with lepidocrocite, and magnetite appeared, while the magnetite was oxidized to lepidocrocite again during the dry period. Electrochemical reduction and chemical oxidization cycled in intermittent wetting and drying periods, and magnetite and lepidocrocite were involved in the reduction reaction, leading to serious corrosion.

A Study on the Micropollutants and Removal of Micropollutants Contained in Road Runoff (노면배수에 함유된 미량오염물질 및 제거에 관한 연구)

  • Kim, Boo-Gil;Park, Heung-Jai;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.215-219
    • /
    • 2009
  • Micropollutants, which can be caused by imperfect combustion, are toxic chemical compound that flows into the river system after being contained in road runoff, a non-point source pollutant and accumulates in the body. The micropollutants that have characteristics such as toxicity, persistence, bio-accumulation, long-range transportation behave so similarly to micro particles that they can be removed by means of filtration or absorption. This study has examined the kinds and concentrations of micropollutants contained in deposited road particles. It has revealed that the kinds of micropollutants contained in the clarified supernatant liquid of deposited road particles are heavy metals and polycyclic aromatic hydrocarbons(PAHs) composed of two or three benzene rings, including naphthalene and acenaphthalene. Their concentrations have been shown to be low, with 0.418 mg/L, 0.058 mg/L, 0.104 mg/L, 0.014 mg/L, 0.00075 mg/L for Zn, Pb, Cu, Cr, Cd, respectively and 0.00156 mg/L and 0.00184 mg/L for naphthalene and acenaphthalene.

Quality Attributes of Fat-free Sausage Made of Chicken Breast and Liquid Egg White

  • Lee, Hyun Jung;Jo, Cheorun;Nam, Ki Chang;Lee, Kyung Haeng
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.449-455
    • /
    • 2016
  • We developed a type of sausage made of chicken breast and liquid egg whites for consumers interested in weight management. To determine the quality of the product, its chemical characteristics, fatty acid composition, free amino acid contents, and nucleotides contents were evaluated during 4 weeks of storage. Sensory evaluation was conducted by both general consumers and body-builders. The sausage was proposed as a fat-free product as fat content was 0.12% based on the Korean Indication Standard of Animal Origin Food. Protein content was 13.42% and calorie value was 61.50 kcal/100 g of the sausage. In sensory evaluation, the mixture of chicken breast and egg whites stuffed into the same casing had an adverse effect on taste, color, texture and overall acceptance while the product that contained egg white stuffed separately into the outer casing enclosing the chicken breast (double layer) improved these attributes. The developed double-layer sausage can last for at least 4 weeks of storage without quality deterioration of flavor-related compounds, such as fatty acids and nucleotides.

A Study on the Consequences of Underground High Pressure Natural Gas Pipelines (고압 매몰 천연가스 배관 누출사고 피해해석에 관한 연구)

  • Lee, Seungkuk;Shin, Hun Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • Due to rapid rise of consuming rate for natural gas, installation and operation of high pressure natural gas pipeline is inevitable for high rate of gas transportation. Accordingly incidents on the underground high pressure natural gas pipeline come from various reasons will lead to massive release of natural gas and gas dispersion in the air. Further, fire and explosion from ignition of released gas may cause large damage. This study is for release rate, dispersion and flash fire of natural gas to establish a safety management system, setting emergency plan and safety distance.

A Geochemical Boundary in the East Sea (Sea of Japan): Implications for the Paleoclimatic Record

  • Han, Sang-Joon;Hyun, Sang-Min;Huh, Sik;Chun, Jong-Hwa
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2002
  • Sediment from six piston cores from the East Sea (Sea of Japan) was analyzed for evidence of paleoceanographic changes and paleoclimatic variation. A distinct geochemical boundary is evident in major element concentrations and organic carbon content of most cores near the 10-ka horizon. This distinctive basal Holocene change is interpreted to be largely the result of changing sediment sources, an interpretation supported by TiO_2/Al_2O_3$ ratios. Organic carbon and carbonate contents also differ significantly between the Holocene and glacial intervals. The C/N ratio of organic matter is greater than 10 during the glacial period, but is less than 10 for the Holocene, suggesting that the influx of terrigenous organic matter was more volumetrically important than marine organic matter during glacial times. The chemical index of weathering (CIW) is higher for the Holocene than the glacial interval, and changes markedly at the basal Holocene geochemical boundary. Silt fractions are higher in the glacial interval, suggesting a strong effect of climate on silt particle transportation: terrigenous aluminosilicates and continental organic carbon transport were higher during glacial times than during the Holocene. Differences in sediment composition between the Holocene and glacial period are interpreted to have been climatically induced.