• 제목/요약/키워드: chemical stress

검색결과 1,230건 처리시간 0.026초

수직하중에 의한 응력이 CMP 공정의 디싱에 미치는 영향 (Investigation of the Relationship Between Dishing and Mechanical Stress During CMP Process )

  • 김형구;김승현;김민우;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.30-34
    • /
    • 2023
  • Since dishing in the CMP process is a major factor that hinders the uniformity of the semiconductor thin film, many studies have focused this issue to improve the non-uniformity of the film due to dishing. In the metal layer, the dishing mainly occurs in the central part of the metal due to a difference in a selection ratio between the metal and the dielectric, thereby generating a step on the surface of the metal layer. Factors that cause dishing include the shape of the thin film, the chemical reaction of the slurry, thermal deformation, and the rotational speed of the pad and head, and dishing occurs due to complex interactions between them. This study analyzed the stress generated on the metal layer surface in the CMP process using ANSYS software, a commercial structure analysis program. The stress caused by the vertical load applied from the pad was analyzed by changing the area density and line width of the dummy metal. As a result of the analysis, the stress in the active region decreased as the pattern density and line width of the dummy metal increased, and it was verified that it was valid compared with the previous study that studied the dishing according to the dummy pattern density and line width of the metal layer. In conclusion, it was confirmed that there is a relationship between dishing and normal stress.

  • PDF

전력케이블내 반도전 재료의 전기적 및 기계적 특성; 체적저항과 Stress-Strain 측정 (Electrical and Mechanical Properties of Semiconductive Shield in Power Cable; Volume Resistivity and Stress-Strain Measurement)

  • 이경용;양종석;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.45-50
    • /
    • 2005
  • To improve mean-life and reliability of power cable, in this study, we have investigated electrical properties and stress-strain showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the pre-heated oven of both 25±1 [℃] and 90±1 [℃]. And stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/㎠] and 600[%]. In addition tests of stress-strain were progressed by aging specimens in air oven. From this experimental results, volume resistivity was high according to increasing the content of carbon black. And yield stress was increased, while strain was decreased according to increasing the content of carbon black. And stress-strain were decreased some after aging because of oxidation reaction of chemical defect. We could know EEA was excellent more than other specimens from above experimental results.

CMP에서 리테이너링의 압력에 따른 연마율 프로파일과 응력 분포 해석 (Analysis of Material Removal Rate Profile and Stress Distribution According to Retainer Pressure)

  • 이현섭;이상직;정석훈;안준호;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.482-483
    • /
    • 2009
  • In chemical mechanical planarization (CMP) process, the uniformity of stress acting on wafer surface is a key factor for uniform material removal of thin film especially in the oxide CMP. In this paper, we analyze the stress on the contact region between wafer and pad with finite-element analysis (FEA). The setting pressure acting on wafer back side was $500g/cm^2$ and the retainer pressure was changed from 300 to $700g/cm^2$. The polishing test is also done with the same conditions. The material removal rate profiles well-matched with stress distribution.

  • PDF

에틸렌 반응로에 대한 복합 열전달 해석 (Conjugate Heat Transfer Analysis of an Ethylene Furnace)

  • 안준;박진우
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.515-519
    • /
    • 2015
  • Conjugate heat transfer analysis for an ethylene furnace was carried out based on numerical simulation. Detailed distributions of velocity vectors, chemical species, and temperature inside the furnace are presented and discussed. Von Mises stress and heat flux at the tube surface were also evaluated to elucidate mechanisms regarding failure of the tube. Maximum stress was found at the upstream elbow of the tube, which did not coincide with the location of maximum heat flux. This implies that thermal stress at a steady state would not be a dominant component of the stress. Degradation of the material, as well as the system arrangement, should be considered in order to accurately predict the lifetime of the tube material in the furnace.

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • 손영수
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

The Effects of Starvation on Physiological Changes and Stress Response in Cultured Cobitid Loach (Misgurnus anguillicaudatus) Exposed to Sodium Nitrite

  • Hur, Jun Wook;Gil, Hyun Woo;Park, In-Seok
    • 한국해양생명과학회지
    • /
    • 제3권2호
    • /
    • pp.87-95
    • /
    • 2018
  • To investigate effects of starvation on physiological changes, stress response, and survival of cobitid loach (Misgurnus anguillicaudatus) exposed to sodium nitrite (NaNO2), a 4-week experiment was conducted. Fewer fish survived in the starved group than those in the fed group during the experiment. Starvation resulted in growth retardation, leading to differences in body length and body depth between fed and starved groups. The fed gorup continued to grow and remained in good condition. Blood chemical analysis (plasma cortisol and glucose) showed significant differences in stress response to nitrite exposure between fed and starved groups (p < 0.05). These results suggest that all parameters employed in this study to assess effects of starvation with NaNO2 stress are useful information for researching nutritional status in cobitid loach.

Fracture of rock affected by chemical erosion environment

  • Gao, W.;Ge, M.M.
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.373-383
    • /
    • 2016
  • As one natural material, the physical and mechanical properties of rock will be affected very largely by chemical erosion environment. Under chemical environment, the strength of rock will be reduced. Considering the effect of the chemical erosion, fracture factor of rock is reduced. The damage variable is applied to express the change of fracture stress. Therefore, the fracture criterion of rock under chemical environment is constructed. By one experiment of rock fracture under chemical erosion environment, the proposed fracture criterion is verified. The results show that, the fracture path by theory is agree with the testing one well.

열적, 화학적 강화에 의해 잔류응력이 형성된 유약층을 가진 도자기의 기계적 물성 (Mechanical Properties of Porcelain with Thermally and Chemically Induced Residual Stress on Glaze)

  • 김동환;맹지헌;한윤수;김형태;최성철;김형준
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.487-491
    • /
    • 2014
  • In this study, we measured the thermally and chemically induced residual stresses on glaze using the photoelastic method. Porcelain with thermally induced residual stress showed compressive stress of 49 MPa for thermal expansion mismatch and a locally fluctuated stress field over the glaze layer due to compensation of compressive stresses around pores. In the case of chemically strengthened porcelain, the compressive stress on the glaze was 151 MPa which was around 3 times higher than the stress on thermally strengthened glaze. The trend of fracture strength of thermally and chemically strengthened porcelains was coincident with that of the residual stress of porcelains.

실측 파형과 수치 파형에 의한 진동주응력 비교 (Comparison of the Vibration Principal Stress by Experimental and Numerical Waveform)

  • 홍웅기;송정언;박영민
    • 환경영향평가
    • /
    • 제21권5호
    • /
    • pp.609-615
    • /
    • 2012
  • In recent years, the development of computer technique was possible to the simulation analysis of the structure caused by ground vibration. Generally, finite element method(FEM) has been used in these structural analysis. In this study, it was calculated to the vibration energy as measuring vibration waveform, and estimated about principal stress due to medium characteristics of the ground as processing dynamic analysis by the vibration energy. The results are as follows : Firstly, the principal stress distribution in all mediums was different due to a medium condition, and the principal stress at concrete medium was represented to difference due to physical characteristics. Secondly, the principal stress by time increasing was represented to maximum amplitude within 0.03 second. And also, the principal stress after maximum amplitude was very large at concrete medium, which was considered to be formed compression or tension range at a medium boundary. Thirdly, the variation of principal stress at concrete medium was represented in the order of RC medium, NC=H medium, NC=S medium. It was considered that the vibration energy propagated fast when a medium have a big elasticity and density.

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.