• Title/Summary/Keyword: chemical states

Search Result 856, Processing Time 0.022 seconds

Annealing and In Interlayer Effects on the Photovoltaic Properties of CBD-In2S3/CIGS Solar Cells (열처리와 In 중간층 적용에 의한 CBD-In2S3/CIGS 태양전지의 특성 향상)

  • Kim, Hee-Seop;Kim, Ji-Hye;Shin, Dong-Hyeop;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.432-438
    • /
    • 2011
  • In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the $In_2S_3$/CIGS solar cell dramatically improved when the films were annealed at $300^{\circ}C$ in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the $In_2S_3$/CIGS interface. The $In_2S_3$/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the $J_{sc}$ and FF values. Furthermore, the $In_2S_3$/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.

Etching Mechanism of $YMnO_3$ Thin Films in High Density $CF_4$/Ar Plasma ($CF_4$/Ar 가스 플라즈마를 이용한 $YMnO_3$ 박막의 식각 반응연구)

  • 김동표;김창일;이철인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.959-964
    • /
    • 2001
  • We investigated the etching characteristics of YMnO$_3$ thin films in high-density plasma etching system. In this study, YMnO$_3$ thin films were etched with CF$_4$/Ar gas chemistries in inductively coupled plasma(ICP). Etch rates of YMnO$_3$ increased up to 20% CF$_4$ in CF$_4$/(CF$_4$+Ar), but decreased with furthermore increasing CF$_4$ in CF$_4$/(CF$_4$+Ar). In optical emission spectroscopy (OES) analysis, F radical and Ar* ions in plasma at various gas chemistries decreased with increasing CF$_4$ content. Chemical states of YMnO$_3$ films exposed in plasma were investigated with x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). There is a chemical reaction between metal (Y, Mn) and F and metal-fluorides were removed effectively by Ar ion sputtering. YF$_{x}$, MnF$_{x}$ such as YF, YF$_2$, YF$_3$ and MnF$_3$ were detected using SIMS analysis. The etch slope is about 65$^{\circ}$ and cleasn surface. surface of the etched YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The etch profile was also investigated by scanning electron microscopy (SEM).EM).

  • PDF

Synthesis of $TiO_2$ Powders by the Hydrolysis of Titanium n-Butoxide and Reaction Mechanism (Titanium n-Butoxide의 가수분해에 의한 $TiO_2$ 분말 합성과 반응 메커니즘)

  • Park, J.K.;Myung, J.J.;Chung, Y.S.;Kyong, J.B.;Kim, H.K.
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.505-510
    • /
    • 1999
  • $TiO_2$ powders were prepared via hydrolysis of titanium n-butoxide in n-butanol and hydrolysis mechanism of titanium n-butoxide was studied using UV-Vis spectrometer. Hydrolysis reactions were controlled to proceed to pseudo-first order reaction in the presence of excess water. The phases of $TiO_2$ powders, prepared under the these conditions, were identified by XRD and reaction rates were calculated by Gugggenheim method. Prepared powders were noncrystalline states in their initial stage of formation but transformed to crystalline rutile structure by heating. Reaction mechanism of titanium n-butoxide was proposed as Interchange-Associative(Ia) mechanism, based on the data of n-value and termodynamic parameters which were determined from the rate constants.

  • PDF

Structural, optical, and electrical properties on Cu(In,Ga)$Se_2$ thin-films with Cu-defects and In/(In+Ga) ratio (Cu(In,Ga)$Se_2$ 박막의 Cu 결함 및 In, Ga 비율의 변화에 따른 구조적, 광학적, 전기적 특성 연구)

  • Jeong, A.R.;Kim, G.Y.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Kang, J.K.;Lee, D.H.;Nam, D.H.;Cheong, H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We report on a direct measurement of two-dimensional chemical and electrical distribution on the surface of photovoltaic Cu(In,Ga)$Se_2$ thin-films using a nano-scale spectroscopic and electrical characterization, respectively. The Raman measurement reveals non-uniformed surface phonon vibration which comes from different compositional distribution and defects in the nature of polycrystalline thin-films. On the other hand, potential analysis by scanning Kelvin probe force microscopy shows a higher surface potential or a small work function on grain boundaries of the thin-films than on the grain surfaces. This demonstrates the grain boundary is positively charged and local built-in potential exist on grain boundary, which improve electron-hole separation on grain boundary. Local electrical transport measurements with scanning probe microscopy on the thin-films indicates that as external bias is increases, local current is started to flow from grain boundary and saturated over 0.3 V external bias. This accounts for carrier behavior in the vicinity of grain boundary with regard to defect states. We suggest that electron-hole separation at the grain boundary as well as chemical and electrical distribution of polycrystalline Cu(In,Ga)$Se_2$ thin-films.

  • PDF

A Study on Vulcanization Reaction of Modified Rubber Blends Using Dynamic Differential Scanning Calorimetry (Dynamic DSC를 이용한 개질 고무 블랜드의 가황 반응에 관한 연구)

  • Lee, Seung-Hyun;Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Even though many studies have been reported about rubber vulcanization, it is still remained difficult to find a quantitative relationship between the final states of vulcanized rubber and initial formulation or processing conditions. Dynamic differential scanning calorimetry (DSC) method is known as a comparatively easy method to research for the rubber vulcanization in both experimental and analysis. In the present research, a study on the vulcanization reaction of NR/CB composites modified by isoprene(IR) and chloroprene(CR) rubbers is carried out using dynamic DSC method. Thermograms with several different heating rates were obtained and analyzed using the Kissinger method. Analysis showed that the vulcanization reaction was progressed through the first order reaction mechanism. In addition, the reaction temperature was severely influenced by the kinds or rubber modifiers, in this case, more influenced by CR than by IR. Those effects were clearly verified in the values of activation energy. Kinds of carbon blacks, however, could hardly influence on the reaction mechanism.

Separation of $PuO_2^{2+}$, $Pu^{4+}$ and $Pu^{3+}$ by Ion Chromatography (이온크로마토그래피에 의한 $PuO_2^{2+}$, $Pu^{4+}$$Pu^{3+}$의 분리)

  • Joe, Kih Soo;Kim, Jong Gu;Park, Yang Soon;Kim, Do Yang;Eom, Tae Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.280-285
    • /
    • 1999
  • Separation of plutonium species was studied by ion chromatography installed in a glove box for the determination of plutonium element. The plutonium species, $PuO_2^{2+},\; PC^{4+}\; and\; Pu^{3+}$, were stably separated on dynamically equilibrated cation exchanger using 1-octanesulfonate and ${\alpha}$-HiBA eluant after controlling the plutonium oxidation states with KI, $NaNO_2\;or=;KBrO_3$ based on the oxidation-reduction potentials. For the separation of plutonium from other matrix, $PuO_2^{2+}\; and\; Pu^{4+}$ were reduced to $Pu^{3+}$ with KI and $NaNO_2$ followed by cation exchange chromatography.

  • PDF

The Effects of Reward Methods in Cooperative Learning (보상 제공 방법에 따른 협동학습의 효과)

  • Noh, Tae-Hee;Yoon, Seon-Ae;Han, Jae-Young;Lee, Chi-Young
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.625-632
    • /
    • 2003
  • In this study, the effects of two types of reward methods in cooperative learning were investigated upon students' achievement, learning motivation, perceptions of learning environment and perceptions of reward methods. Seventh graders (N=61) were selected from a co-ed middle school in Seoul, and were taught about 'three states of matter', 'motion of molecules' and 'change of state and thermal energy' for 14 class hours. Reward methods were classified into task-oriented reward and performance-oriented reward. The results revealed that high-level students performed better in the task-oriented reward group, and low-level students performed better in the performance-reward group for the 'application' subcategory of the achievement test. The scores of attention and relevance in learning motivation and task orientation, involvement, and order and organization in perceptions of learning environment test were significantly higher in the task-oriented reward group than those in the performance-oriented reward group.

Ab initio and DFT Study for the Internal Rotations of Cyclopropyldifluoroborane Molecule (Cyclopropyldifluoroborane 분자의 내부회전에 대한 이론적인 연구)

  • Kim, Gyeong-Lee;Lee, Jeong-Gyeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • The equilibrium structures, relative energies and NBO analyses for the possible conformations and transition states which can exist on the internal rotation of CPDFB and CPCFB molecules have been investigated using DFT and ab initio methods with various basis sets. The interaction between bonding orbital ((C1-C3, C2-C3)) and antibonding orbital (n*(B9) and *(B9-Cl11)) was the main characteristic hyperconjugation in both molecules. In addition, the stabilization energy of CPDFB was 6.63kcal/mol and that of CPCFB was 6.97(E-form)/6.79(Z-form) kcal/mol for each conformation. The rotational barriers by internal rotation of BF2- and BFCl- functional groups were evaluated to be 5.3~6.7kcal/mol and 5.7~6.5kcal/mol respectively, which showed good agreement with the experimental values reported by previous dynamic NMR study. Finally, Z-form was more stable than E-form by 0.2 kcal/mol in CPCFB molecule and therefore Z-form was confirmed as global minimum.

Theoretical Studies on the Addition Reactions of Ketene with NH3 in the Gas Phase and in Non-Aqueous Solutions

  • Kim, Chang-Kon;Lee, Kyung A;Chen, Junxian;Lee, Hai-Whang;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1335-1343
    • /
    • 2008
  • Theoretical studies on the un-catalyzed and catalyzed aminations of ketene with $NH_3$ and $(NH_3)_2$, respectively, were studied using MP2 and hybrid density functional theory of B3LYP at the 6-31+G(d,p) and 6- 311+G(3df,2p) basis sets in the gas phase and in benzene and acetonitrile solvents. In the gas phase reaction, the un-catalyzed mechanism was the same as those previously reported by others. The catalyzed mechanism, however, was more complicated than expected requiring three transition states for the complete description of the C=O addition pathways. In the un-catalyzed amination, rate determining step was the breakdown of enol amide but in the catalyzed reaction, it was changed to the formation of enol amide, which was contradictory to the previous findings. Starting from the gas-phase structures, all structures were re-optimized using the CPCM method in solvent medium. In a high dielectric medium, acetonitrile, a zwitterions formed from the reaction of $CH_2$=C=O with $(NH_3)_2$, I(d), exists as a genuine minimum but other zwitterions, I(m) in acetonitrile and I(d) in benzene become unstable when ZPE corrected energies are used. Structural and energetic changes induced by solvation were considered in detail. Lowering of the activation energy by introducing additional $NH_3$ molecule amounted to ca. −20 $\sim$ −25 kcal/mol, which made catalyzed reaction more facile than un-catalyzed one.

Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production (수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석)

  • Lee, Yu-Jin;An, Geon-Hyoung;Park, Man-Ho;Lee, Chang-Woo;Choi, Sang-Hyun;Jung, Ju-Yong;Jo, Sung-Jong;Lee, Kun-Jae;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.