• Title/Summary/Keyword: chemical states

Search Result 850, Processing Time 0.024 seconds

Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

  • Lee, Minjae;Kim, Bo-Hyun;Lee, Yuna;Kim, Beom-Tae;Park, Joon B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1979-1984
    • /
    • 2014
  • We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in $H_2$ and $O_2$ gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF

Recent Advances in Tyrosinase Research as An Industrial Enzyme (산업용 효소로써 티로시나아제 연구의 최근 동향)

  • Kim, Hyerin;Kim, Hyunmi;Choi, Yoo Seong
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.

The Present Status of Science Experimental Education and the Cautions on Using Toxic Chemicals (과학 실험 교육의 현황과 실험 시약 사용의 주의사항)

  • 김윤경;정해문
    • Hwankyungkyoyuk
    • /
    • v.11 no.2
    • /
    • pp.144-155
    • /
    • 1998
  • This research aims to perceive the present state of science experimental education practiced in middle school and also to improve the laboratorial environment. Accordingly, this study surveyed 297 middle school science teachers in Seoul to examine the risks and accidents occurred during lab sessions, the conditions of chemical waste disposal, and whether or not teacher's manual clearly states cautions on toxic chemicals. About 70%(69.6%) of science teachers were highly concerned about risks and toxicity of chemicals used in classes, 59.9% experienced actual accidents, and 83.2% were anxiety of incidents caused by chemicals. Besides, 55.2% of science teachers answered that they have little knowledge about caring noxious chemicals used in lab sessions. So it turns out that they need more specific education on handling toxic chemicals. More than one third(36.7%) answered that they disposed of chemical waste water without any special care or kept it in the lab after experiments. The number of chemicals as well used in middle school curriculum is increasing as grades gets higher toxic chemicals. However, there are few teachers' manual covering how to handle noxious chemicals. Therefore, in middle school curriculum the number of poisonous chemicals should be minimized as much as possible, and in case the toxic chemicals have to be used, teacher's guide book should state precautions on handling chemicals in detail. Also government should make it obligatory on schools to instate ventilator for chemical waste, or to transport the waste to proper disposal systems.

  • PDF

Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV

  • Yoon, Jang-Hee;Yang, Jee-Eun;Kim, Jong-Phil;Bae, Jong-Seong;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • The simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in aqueous medium using a BDD electrode with DPASV is described. XPS was used to characterize the chemical states of trace metal ions deposited on the BDD electrode surface. Experimental parameters that affect response, such as pH, deposition time, deposition potential, and pulse amplitude were carefully optimized. The detection limits for Cd (II), Pb (II), Cu (II), and Hg (II) ions were 3.5 ppb, 2.0 ppb, 0.1 ppb and 0.7 ppb, respectively. The application of the BDD electrode on the electrochemical pretreatment for the simultaneous metal detection in the dye waste water was also investigated.

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

Photodissocaition Dynamics of Propiolic Acid at 212 nm: The OH Production Channel

  • Shin, Myeong Suk;Lee, Ji Hye;Hwang, Hyonseok;Kwon, Chan Ho;Kim, Hong Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3618-3624
    • /
    • 2012
  • Photodissociation dynamics of propiolic acid ($HC{\equiv}C-COOH$) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ($^2{\Pi}$) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and total translational energy of products were determined. The electronic transition at 212 nm responsible for OH dissociation was assigned as the ${\pi}_{C{\equiv}C}{\rightarrow}{\pi}^*{_{C=O}}$ transition by time-dependent density functional theory calculations. Potential energy surfaces of both the ground and electronically excited states were obtained employing quantum chemical calculations. It was suggested that the dissociation of OH from propiolic acid excited at 212 nm should take place along the $S_1/T_1$ potential energy surfaces after internal conversion and/or intersystem crossing from the initially populated $S_2$ state based upon the potential energy calculations and model calculations for energy partitioning of the available energy among products.

Scanning Photoelectron Microscopy Study on the Chemical State of Locally Oxidized and Hydrogenized Graphene Layer

  • Km, Wondong;Byun, Iksu;Hwang, Inrok;Park, Bae Ho;Baek, Jaeyun;Shin, Hyun-Joon;Shiu, Hung Wei;Chen, Chia-Hao
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.144.1-144.1
    • /
    • 2013
  • Recently, we have developed the local oxidization and hydrogenization method for graphene layer using atomic force microscope(AFM) tip at room temperature and ambient pressure. With this method we could create locally oxidized or hydrogenized area on the graphene layer with various size from nanometer to micrometer scale, by controlling the amplitude and polarity of the voltage supplied between conducting AFM tip and the graphene layer. We investigated the chemical states of functionalized C atoms in the graphene layer using scanning photoelectron microscopy. By measuring C 1s core level X-ray Photoemission Spectra of the C atoms and suitable fitting process carried on the measured spectra, we could obtain the fraction of oxidization and hydrogenization under various condition, and the evolution of each chemical state during thermal annealing process.

  • PDF

Absorption and Fluorescence of Sm(III) Complexes with some Terdentate Ligands

  • Kim, Jong-Goo;Yoon, Soo-Kyung;Yun, Sock-Sung;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.54-59
    • /
    • 1992
  • Spectroscopic measurements and theoretical calculations are performed for the four 1 : 3 Sm(III) : ligand solutions. The ligands included in this study are oxidiacetate, iminodiacetate, methyliminodiacetate and dipicolinate. The oscillator strengths for the $4f{\to}4f$ multiplet-to-multiplet transitions are empirically determined from the absorption spectra. The intensity parameters ${\Omega}_{\lambda}\;({\lambda}=2,\;4,\;6)$ of $Sm^{3+}$(aquo) and ${SmL_3}^{3-}$ complexes are also evaluated by applying the Judd-Ofelt theorem to the observed oscillator strengths. The values of the intensity parameters are compared and discussed in term of structural properties of the complexes. In addition, the fluorescence spectra are reported for the Sm(III) complex systems under mild alkaline condition. The excitation from the $^6H_{5/2}$ ground state to any excited states lying above the emitting energy level $(^4G_{5/2})$ produces four fluorescence bands, following nonradiative transitions from a certain excited state to the $^4G_{5/2}$ state. The ratios of oscillator strengths of ${SmL_3}^{3-}$ complexes to that of $Sm^{3+}$(aquo) are also evaluated from the fluorescence spectra and compared to the results obtained from the absorption bands.

Application of Laser Induced Photoacoustic Spectroscopy in the Investigation of Interaction of Neodymium(III) with Water Soluble Synthetic Polymer

  • Tae Hyung Yoon;Hichung Moon;Seung Min Park;Joong Gill Choi;Paul Joe Chong
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.574-578
    • /
    • 1993
  • Laser-induced photoacoustic spectroscopy (LIPAS), which utilizes the photothermal effect that results from nonradiative relaxation of excited state molecules, was used in the speciation analysis of the complexes of neodymium(III) and water soluble synthetic polyelectrolyte, poly methacrylic acid (PMAA), in 0.1 M $NaClO_4$ at pH of 6.0. The minimum detection limit of Nd(III) by LIPAS was $5.O{\times}10^{-6}$ M. Experiment was carried out at low concentration ratio of Nd(III) to PMAA to assure that 1 : 1 complexes predominate. The bound and free Nd(III) species were characterized by measuring nonradiative relaxation energy of the excited states $(^2GM{7/2}\;and\;^4G_{5/2})$ to the metastable state $(^4G_{3/2})$. Two species were quantified by deconvolution of the mixed spectrum using their respective reference spectra. The conditional stability constant measured by LIPAS was 5.52 L$mol^{-1}$.