• Title/Summary/Keyword: chemical states

Search Result 850, Processing Time 0.023 seconds

Calculation of Potential Energy Curves of Excited States of Molecular Hydrogen by Multi-Reference Configuration-interaction Method

  • Lee, Chun-Woo;Gim, Yeongrok;Choi, Tae Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1771-1778
    • /
    • 2013
  • For the excited states of a hydrogen molecule up to n = 3 active spaces, potential energy curves (PECs) are obtained for values of the internuclear distance R in the interval [0.5, 10] a.u. within an accuracy of $1{\times}10^{-4}$ a.u. (Hartree) compared to the accurate PECs of Kolos, Wolniewicz, and their collaborators by using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. It is found that the accuracy of the PECs can be further improved beyond $1{\times}10^{-4}$ a.u. for that R interval by including the Rydberg basis functions with angular momentum quantum numbers higher than l = 4.

The Potential Energy Surfaces and Dipole Moment Functions of $NH_2$ by ab initio Effective Valence Shell Hamiltonian

  • 윤승훈;윤영속;박종근;선호성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.985-993
    • /
    • 1998
  • The second order effective valence shell Hamiltonian ($H^v$), which is based on quasidegencrate many-body perturbation theory, is applied to determining the potential energy surfaces and the dipole moment functions of the various valence states of $NH_2$. The $H^v$ calculated values are found to be in good agreement with those of other ab initio calculations or experiments. It signifies the fact that the $H^v$ is a good ab initio method to describe the energies and properties of various valence states with a same chemical accuracy. Furthermore, it is shown that the lowest (second order for energy and the first order for property) order $H^v$ method is very accurate for small molecules like $NH_2$ and the matrix elements of Hv which are computed only once are all we need to accurately describe all the valence states simultaneously.

Hydrogen Bonding Dynamics of Phenol-(H2O)2 Cluster in the Electronic Excited State: a DFT/TDDFT Study (전자 여기상태에서 phenol-(H2O)2 크러스터의 수소결합 동력학: DFT/TDDFT 연구)

  • Wang, Se;Hao, Ce;Wang, Dandan;Dong, Hong;Qiu, Jieshan
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.385-391
    • /
    • 2011
  • The time-dependent density functional theory (TDDFT) method has been carried out to investigate the excitedstate hydrogen-bonding dynamics of phenol-$(H_2O)_2$ complex. The geometric structures and infrared (IR) spectra in ground state and different electronically excited states ($S_1$ and $T_1$) of the hydrogen-bonded complex have been calculated using the density functional theory (DFT) and TDDFT method. A ring of three hydrogen bonds is formed between phenol and two water molecules. We have demonstrated that the intermolecular hydrogen bond $O_1-H_2{\cdots}O_3-H$ of the three hydrogen bonds is strengthened in $S_1$ and $T_1$ states. In contrast, the hydrogen bond $O_5-H_6{\cdots}O_1-H$ is weakened in $S_1$ and $T_1$ states. These results are obtained by theoretically monitoring the changes of the bond lengths of the hydrogen bonds and hydrogen-bonding groups in different electronic states. The hydrogen bond $O_1-H_2{\cdots}O_3-H$ strengthening in both the $S_1$ and $T_1$ states is confirmed by the calculated stretching vibrational mode of O-H (phenol) being red-shifted upon photoexcitation. The hydrogen bond strengthening and weakening behavior in electronically excited states may exist in other ring structures of phenol-$(H_2O)_n$.

The Atomic-Scale Investigation of Friction at Hydrocarbon Interfaces via Molecular Dynamics Simulations ASIATRIB 2002

  • Harrison, J.A.;Gao, G;Chateauneuf, G.M.;Mikulski, P.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.59-60
    • /
    • 2002
  • In this digest, we briefly review our current molecular dynamics (MD) simulations that utilize both the reactive empirical bond order potential (REBO) and the adaptive intermolecular REBO (AIREBO) potential energy functions. The AIREBO potential includes intermolecular interactions, so that self·assembled monolayers, and liquids, can be modeled. We have examined the mechanical and tribological properties of model self assembled monolayers and amorphous carbon films. Self-assembled monolayers are modeled by covalently bonding hydrocarbon chains to diamond substrates. Because the REBO potentials can model chemical reactions, specific compression and sliding induced chemical reactions were identified.

  • PDF

CASPT2 Study on the Low-lying Electronic States of 1,3,5-C6H3Cl3+ Ion

  • Yu, Shu-Yuan;Zhang, Cheng-Gen;Wang, Shu-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1511-1515
    • /
    • 2014
  • The multiconfiguration second-order perturbation theory (CASPT2) and complete active space self-consistent field (CASSCF) methods were employed to calculate the geometries and energy levels for the low-lying electronic states of 1,3,5-$C_6H_3Cl{_3}^+$ ion. The CASPT2 values for the 1,3,5-$C_6H_3Cl{_3}^+$ ion were in reasonable agreement with the available experimental values. The current calculations augmented previous theoretical investigations on the ground state and assigned the low-lying excited electronic states of the 1,3,5-$C_6H_3Cl{_3}^+$ ion. The Jahn-Teller distortion in the excited electronic state for the 1,3,5-$C_6H_3Cl{_3}^+$ ion were reported for the first time.

Male Hynobius leechii (Amphibia: Hynobiidae) Discriminate Female Reproductive States Based on Chemical Cues

  • Park, Dae-Sik;Sung, Ha-Cheol
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.137-143
    • /
    • 2006
  • A series of no-choice olfactory response tests using water pre-conditioned with females, with intact and surgically removed ventral glands, at various reproductive states were conducted to determine whether male Hynobius leechii discriminates among females in different reproductive states based on chemical cues. Similarly, ventral gland extracts were tested, and ventral glands were examined histologically. Males’ responses to putative odors of females in four (ovulating, ovulated, ovipositing, and oviposited) reproductive states were independently measured by: i) the latency time to initiate male behavioral response, ii) the arrival time at a fixed point of putative odor source, and iii) the staying time close to the odor point source. Male salamanders showed significant olfactory responses to recently ovulated and ovipositing female odors by quickly arriving at odor sources and staying longer at the origin of the source, but the olfactory responses to the earlier staged ovulating females and the later stage of already oviposited females were not different from controls. Olfactory responses of test males to water preconditioned by intact females or females with ventral glands excised were not different. In addition, ventral gland extracts did not induce significant olfactory responses of test males although the lumens of alveoli in ventral glands of oviposited females were smaller than those of ovulated females. These results indicate that male H. leechii recognizes ovulated and ovipositing females based on chemical cues released but not from the ventral glands.

Theoretical Studies of the Low-Lying Electronic States of Diazirine and 3,$3^{\prime} $-Dimenthyldiazirine

  • 한민수;조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1281-1287
    • /
    • 1999
  • The low-lying electronic states of diazirine and 3,3'-dimethyldiazirine have been studied by high level ab initio quantum chemical methods. The equilibrium geometries of the ground state and the first excited singlet and triplet states have been optimized using the Hartree-Fock (HF) and complete active space SCF (CASSCF) methods, as well as using the Møller-Plesset second order perturbation (MP2) theory and the single configuration interaction (CIS) theory. It was found that the first excited singlet state is of 1 B1 symmetry resulting from the n- π* transition, while the first excited triplet state is of 3 B2 symmetry resulting from the π- π* transition. The harmonic vibrational frequencies have been calculated at the optimized geometry of each electronic state, and the scaled frequencies have been compared with the experimental frequencies available. The adiabatic and vertical transition energies from the ground electronic state to the low-lying electronic states have been estimated by means of multireference methods based on the CASSCF wavefunctions, i.e., the multiconfigurational quasidegenerate second order perturbation (MCQDPT2) theory and the CASSCF second-order configuration interaction (CASSCF-SOCI) theory. The vertical transition energies have also been calculated by the CIS method for comparison. The computed transition energies, particularly by MCQDPT2, agree well with the experimental observations, and the electronic structures of the molecules have been discussed, particularly in light of the controversy over the existence of the so-called second electronic state.

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Yoon, Jun-Ho;Lim, Jeong Sik;Woo, Kyung Chul;Kim, Myung Soo;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.415-420
    • /
    • 2013
  • Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.