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A formalism to calculate microcanonical variational transition state theory sum of states, N(E, R), was derived using
the Euler angle and spherical polar coordinate systems. This method was applied to the reaction CsHsBr-* —
C*Hs* +Br-. We have an excellent agreement on N(E, R) curves near the transition states between the results
calcufated either by the Wardlaw and Marcus method or by the present method. Using a simple model potential
surface, this reaction showed multiple transition states with the late conversion of the transitional mode. This reaction
also showed transition state switching from orbiting (loose) transition state to tight transition state as the reaction

energy is increased.

Introduction

Transition state theory (TST)~* usually assumes that the
location of transition state {(TS) is at the maximum of the
minimum energy path (MEP). The rate constant, then, is
calculated using the standard RRKM expression,*™¢

N} (E-E,)
hp(E)

where N¥(E—E,) is the sum of states of the TS with avail-
able energy equal to E—E, p(E) is the density of states
of the reactants with energy E, and £, is the activation en-
ergy. However, in the case where there is no reverse activa-
tion barrier, such as in the simple bond fission reactions,
radical-radical and ion-molecule recombinations, and the de-
composition reactions of molecular ions, the location of the
TS can no longer be determined by the usuat way.”™® A
simple and well-established method is the application of the
phase space theory (PST) which assumes that the TS is
located at the maximum of the effective potential, and the
properties of the TS pertains those of the fragments’' rota-
tional and vibrational structures)®~ This type of TS's is
usually called as an orbiting (or loose) transition state (OTS)
representing that the fragments are assumed freely orbiting
with respect to each other due to the long distance between
them. A package for this kind of calculations is already publi-
shed.”

A more rigorous way to determine the location of the TS
would be using the variational criteria* "' In the variational
transition state theory (VIST) methods, the reactant density
of states is a fixed quantity, and hence the only thing needs
to be calculated as a function of the reaction coordinate R
is the sum of states in the numerator of Eq. (1). The varia-
tional criteria

k(E)= )

IN(E-V(R);R)
oR

where V(R) is the reaction coordinate potential, is then ap-
plied to determine the location of the TS.

A number of VTST methods were suggested and used
by many people’ %%~ A flexible transition state theory

=0 (2

(FTST) formalism based on the action-angle coordinates has
been developed by Wardlaw and Marcus.”®?' This method
includes a full implementation of angular momentum coupl-
ing between the rotations and orbiting motion of the frag-
ments, as well as total angular momentum conservation.
Klippenstein and Marcus derived another expression using
Euler angle coordinates.®® For atom-diatom systems, Song
and Chesnavich modified the Wardlaw-Marcus method using
spherical polar coordinates.®® When only the angular momen-
tum averaged values are necessary to obtain, this method
can save a great deal of computing time. Klippenstein sug-
gested a method which can use any internal coordinate such
as the dissociating bond length as the reaction coordinate. %
He demonstrated that this method can produce much lower
rate constant than conventional center of mass distance reac-
tion coordinates. Smith derived an angular momentum re-
solved expression by doing the momentum space integral
analyticaily**®

In this study, the method of Song and Chesnavich is ex-
tended using Euler angle coordinates so that it can be app-
lied to the reactions with nonlinear fragments. This method
will be applied to the reaction.

CeHsBr* - — CgHs* +Br- 3

which are simple bond cleavage reactions. Previous study
on reaction {3) showed that there exist multiple transition
state (MTS) at certain conditions.® Transition state switching
(TSS) from a loose, orbiting transition state (OTS) at low
internal energies of the ion, to tight transition state (TTS)
at high internal energies was demonstrated at zero angular
momentum limit.

TSS may be understood in the following way. As the reac-
tants move along the reaction coordinates, a compromise oc-
curs between two factors-(a) The system available energy
decreases as R is extended due to the reaction coordinate
potential curve. This causes a decrease in N. (b) The transi-
tional mode frequencies decrease as R is extended due to
the change of the motion from bending vibrations to rotations
and orbitings. This increases N. At low energies the first
factor is the dominant one. Hence the transition state occurs
at very large R and is the OTS. At higher energies, the
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two factor may offset each other and TSS is expected.

In this study, the sum of states curves for reaction (3)
will be obtained without the restriction on angular momen-
tum. In order to achieve the angular momentum averaged
N(E, R) curve, the generalized method of Song and Chesna-
vich®® will be used. The effect of the angular momentum
of the final N(E, R) curves are also studied for reaction (3).

The structure of this study is as follows. In Sec. I, the
Wardlaw-Marcus method is described for atom-nonlinear
fragments. An expression for angular-momentum-averaged
N(E R) calculations for systems with atom-nonlinear frag-
ments is also derived. The results and discussions for reac-
tion {3) are in Sec. IIl. Conclusive remarks are given in Sec.
IV. Appendices are provided for details of the derivation
of N(E, R) for linear-nonlinear and nonlinear-nonlinear frag-
ment cases and variable reduction in the Wardlaw-Marcus
expression for j/=0 case.

Theory

Wardlaw-Marcus Method

In the flexible transitions state theory (FTST) method.of
Wardlaw-Marcus,”*~?' it is assumed that the spectator (i.e.,
conserved) degrees of freedom are separable from the tran-
sitional modes. Given this assumption, the sum of states N
(E.J R) can be expressed as a convolution between ihe vi-
brational sum of states of the spectator modes N, and the
angular momentum-conserved density of states of the transi-
tional mode p(e J):

NEJR)= ij,(E'—ap(e,j)da, @

where p(g f)de is the density of states of the transitional
modes for the given J, N.(E'—g) is the number of quantum
states in the spectator modes, and E’ being the available
system energy above the zero-point energy E,. To calculate
ple Nde in Eq. (), two sets of body-fixed coordinate axes
are first defined, each fixed in a separating fragment.?® The
origin of each system is located at the center of mass of
that fragment, and when either fragment has some symmetry
its coordinate axes are chosen to coincide with its symmetry
axes. A third set of body fixed coordinates is also defined,
fixed in the molecule as a whole. For the coordinates of
the transitional modes the action-angle coordinates®® are
then introduced.

The materia! in this section is grouped into three parts:
In part 1, a set of action-angle variables suited to atom-non-
linear fragments is obtained. In the second part, the density
of transitional states p(s ) and the classical Hamiltonian
H, for the transitional modes are expressed in terms of
these vairables. Since the potential energy contribution to
H, is modeled in this study to be a function of the atom-
nonlinear separation distances as well as the angle between
the bromine atom and the benzene ring, a transformation
from the action-angle variables to these internat coordinates
is given in the last part.

Coordinates. For systems with atom-nonlinear frag-
ments, such as the reaction (3}, the following system of coor-
dinates was introduced. This coordinate system is applicable
to the systems with atom-nonlinear polyatomic fragment. Fir-
st, let (x, y, z) denote a set of Cartesian coordinate axes fixed
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Figwre 1. Euler diagram depicting the relationship between the
(32, (% ¥,2), and (x" ", 2%) Cartesian coordinate systems
for the atom-nonlinear polyatomic system. / lies along the z axis,
J along the 2’ axis, and x is the projection of j on the 2" axis.
Pairs of the three xy planes intersect along the lines of nodes
N, N", and N", whose orientations are determined by the vec-
tors £Xj, IXx, kXj, respectively; The angles (a, 8; 0) are the
Euler angles specifying the orientation of the primed system
relative to the unprimed system, and the angles (Y, 8, 0) are
those specifying the orientation of the primed system relative
to the doubly primed system,

in the A--X system, the z axis being chosen to lie along
the relative orbital angular momentum action vector f of the
fragments, as in Figure 1. The x axis is chosen to lie along
a vector IXj. The relative separation vector R along the line
of centers of mass of the two fragments lies in the
body-fixed zy plane and is oriented at an angle o with re-
spect to the x axis (o is conjugate to {).

Two coordinate frames (x', v’ 2") and (2", %" 2*) are de-
fined on the fragment X. The atomic position vector r"¢g
for Cs atom of CsHs* is assigned using the CgHs'-fixed (",
y". 2”) Cartesian coordinate system. The double primed axes
are chosen to diagonalize the CsHs* inertia tensor. The prim-
ed system is chosen so that the 2’ axes lies along the vector
J. and the x* axis lies along the intersection of x’y" and x"y”
planes, namely along N” in Figure 1. The projection of j
on the z and z° axes are denoted by 7, and «x, respectively.
The separation vector R™ is chosen to lie along the x™ axis
of a (x7,»",2™) system whose 2" axis coincides with the
z axis of the molecule-fixed (x, y,2) system. The origins of
the unprimed, singly primed, and triply primed Cartesian
systems are chosen to be the center of mass of C;Hs;*. The
angles o, and f,, which is conjugate angle of I, the z projec-
tion of /, specify the orientation of the body-fixed (x, 3 2)
system with respect to a space fixed system. These coordi-
nates provide a set of variables (I oy, B/ 0;7,B,%Y)
which specify the orientation of fragment X in space. Instead
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Figure 2. Various geometrical variables describing the C;H:Br*
system. Cq-Br is the bond being dissociated and #* is the corres-
ponding “bend” distance. The angle 6 and »* determine the tran-
sitional mode potential. R is the vector from CsHs* center of
mass to the Br atom and R is the reaction coordinate,

of (I, s J., B), the variables (J, o, /. B) are used by canonical
transformation. The resulting action variables are }, [, 7, {, and
x, and their respective conjugate angles are a,f, o, o, and
Y.

Density of Transitional States. The expression for

p(e )} is
ole. /)= (2m) o~ [ - [d].djdldxdadpdaydeia¥

XA 1) 8(e—Hy) &Y

for a given value of /. The limits on the angle variables
are 0 to 2n. The J, integral is over the integral (—J J), and
the « integral is restricted by [k|<j. ¢ is a symmetry num-
ber which corrects for the overcounting of any indistinguish-
able configurations in these (0,2n) angle intervals. A(J 7 /)
is unity when the triangle inequality |j—I| £J<j+/ is fulfilled
and zero otherwise. The Hamiltonian H for the transitional
mode is written as

HamE+—3 +Vi7, 0, ®
where p is the reduced mass for relative motion of CeHs*
and Br-, E, is the rotational energy of the C¢Hs* fragment,
and V, is the potential energy function for the transitional
modes. The arguments of V; in Eq. (6) are given as follows:
r* is the distance from Cs atom to the dissociating Br atom,
and 0 is the angle between »* and the line passing through
the two points, C; and center of benzene ring, as shown
in Figure 2. When the fragment X is a symmetric top, its
rotational energy E, of a fragment X has the form j%/2I, + x%/2
1, where I,=I,1/(I,—1I). The principal moments of inertia
(I4 Ig I) of 2 fragment are determined from its equilibrium
geometry. In the case of CgHs* fragments, I and I are al-
most equal. Hence, C¢Hs* is considered as an oblate sym-
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metric top with [y =Iz<I;, which yields 7,<0.

Internal Coordinates. The internal coordinater #* and
9, in which the transitional mode potential V; is expressed,
are determined from the action-angle coordinates as follows.
By transforming R” and r"c; to the (x, 3, 2z) system, the coor-
dinates #*, and 0 are obtained by

= 'R "l’cﬁl,

ey Patr?—R
cos(nt—8) T .
For given &, J, and six-dimension Monte Carlo point (I j x,
@, o, Y) the vectors R and r¢; are obtained by application
of the inverse rotation matrix A~1¥

res=A" 0,0, 0471 (Y, 8, 0)'ce. )
R=A""(ey, 0,0)R". 8

The first application of A~! in Eq. (7) yields the intermediate
vector ¥ in a CiHs*-fixed (', ' 2') system whose 2 axis
lies along j. This primed coordinates are rotationally related
to the (7, y" 2z”) system by the Euler angles (V,8,,0). The
angle Y (conjugate to x) is the angle between the 1" and
x' axes. The 2’ axis is lying along the line of nodes xXj.
8, =cos~'(x/f) is the angle contained between the vectors
k and j (3e, between the 2” and 2’ axes). The second set
of Euler angles (a;,0;,0) in Eq. (7) connects the (x', ¥’ 2")
and (x, y, z) systems: o; (conjugate to f) is the angle between
the ' and x axes, the latter lying along the line of nodes
1Xj; §=cos {(P—-P—//2%) is the angle contained be-
tween the vector  and j (e, between the 2z’ axis and the
z axis). The Euler angle ¢, in Eq. (8) is conjugate to / and
is the angle between the ™ and x axes. Hy is specified by
the variables (R J [ j, , &, o, ¥) and is independent of ([, a,
g). Eq. (5) now becomes

pls N =(I+1(2m) '%‘j--- dedldxda,-dmd?

XA, j D 8(e—H,) ©)
and
NGE J, B =@+ 1) (2m) 6™ [dididwdosdoyay

XNAE'-HJA(G 1 1) (10

This is the equation used to evaluate N(E, J R) for atom-
nonlinear polyatomic fragment systems using the FTST me-
thod of Wardlaw and Marcus.™®~? Since the evaluation of
this equation requires a six-fold integration with boundary
conditions that can often be quite complex, the integration
are usually carried out using Monte Carlo techniques. A de-
tailed derivation for the case of /=0 is described in Appedix
A

The angular momentum averaged N(E, R} values can also
be obtained by integrating Eq. (10) over J, ie,

NE.R) =jd1N(E, LR). an

The integration over / was done using the following points.

0, 10,20, 50, 100, 200, -+, 700, /*

where J¥ is the integration limit described elsewhere.?
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Direct Calculation of N(E, R)

Given the FTST equations summarized above, the evalua-
tion of the angular momentum averaged microcanonical va-
riational sum of states N(E, R) can be carried out directly
in the following manner: First, the quantity p(e), the rotatio-
nal density of states summed over the total angular momen-
tum J, can be obtained from Eq. (5) by integrating over J.71*-2

1 (. ; ,
P(e)= v f fdm,d;dtdxdadada,dmdv

XA 1 D 8(e—H,) 12)

Note that this integration covers the entire rotational-orbital
phase space of the atom-nonlinear polyatomic fragment sys-
tem. Hence it can be rewritten using phase space volume
elements dr; as®®

p(e) =0“‘fdtla't26(e—H,,). (13)

The dv; can be written in terms of the action-angle coordi-
nate system used in Eq. (12), or in terms of spherical-polar
coordinates for atom-linear fragments3® For an atom-pon-
linear polyatomic fragment system, the transitional mode
Homiltonian H, can be written, using Euler angle coordi-
nates ##-IB ¢

Hy=BF+B,P +BP?+BPI+ V(R 8,¢) (14)

where B, is the orbiting rotation constant for atom-nonlinear
pair, B,, B;, and B; are the rotational constants for nonlinear
fragment around the principal axes, P;, P, and P,, are the
angular momentum components for the principal axes, R is
the reaction coordinate, 8 is the angle between symmetry
axis and reaction coordinate, and ¢ is the rotation angle
about symmetry axis. In spherical-polar coordinates, the or-
biting angular momentum ! is defined by
2

—p2
F=p el+_2@x_sinz t (15)

Using the spherical polar coordinates given in Eq. (15), the
differential volume element dr; can be written as

dny = (211) ~2sin &dﬁel dpm d61do. (16)

For the rotation of the nonlinear fragments, dt; can be writ-
ten using the Euler angle coordinates, as

d1,= (2r) 7 sin Oudpe, APy Py A2 d G2 dv:. a7

The limits of integration over the angles 6;, ¢», and y: are
0—mn, 0—2n, and 0—2n, respectively. The transformation
from the Euler axes momenta to the principal axes momenta
can be performed with Jo=12

(oo Do Puc} ——> B2, b, 2} (18)

Using the properties of the 8-function, the simplification
of Eq, (16) can be performed as follows3¥ First, let po, =1,
P =0, and 6,=0, i.c., place the particle initially on the space-
fixed z axis. The angle ¢, can be chosen arbitrarily. It is
necessary to perform the integration

Jau8 (1= 1n, por, 00]= % [ 1~ 10n. pr, 8] (19

to produce dv,. Here, A(x) is a hemisidal step function. The
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integration on the right-hand side can be written explicitly
as

fktla{{ —~1(pay o, 8=
(2n)-2 J :sinﬂldﬁtj?dtm_": dbe, : dper

ph \3

Xh[l—(p§,+ sin?@, ) ] @0
Here, the integration over po, and pg, is equal to the area
of the ellipse of Eq. (15) which is equal to n® sin 8. The
integration over ¢; yields 2it and the integration over 6, yie-
Ids 2 because of the factor sin 6,. The result of Eq. (20}
becomes £ By differentiating this over I, Eq. (19) yields 2.
Hence, dt; becomes

dv=2dl. (21)
Inserting Eqs. (14), (17), (18), and (21) to Eq. (13) yields

o) =a-1(2n) -ﬂzw i Oudp, dpy dp. B, dbady:5(c— Hy) (22)

The angle y. can be integrated since the configuration of
the system can be defined with the two angles, 6; and &..
This integration yields 2n. Eq. (4) now becomes the convolu-
tion integral between the vibrational sum of, states and rota-
tional-orbital density of states:

NER) =—(2“i)50- [(de j :smegdﬁzﬁd%NuEE—a- VAR 6,6)]

dep‘,dpadpc 2Udi e~ (BY*+B,P2 +BP2+B.PD] (23)

Integration over the momenta, I p,, p», and p. can be done
by the Dirichlet Integral® This yields

[dpadpudp. 21t 8Te— B+ BP2+BLI+BPD]

_ 4n
= BvEEE © - 24

Inserting Eq. (24) to Eq. (23) yields final equation for the
microcanonical sum of states

— 1 £
W& 0= 55 BB | =

J:sinﬁzdﬂz :"dd»zN,[E—s—V,.(R, 8,0)]. (25

For systems other than atom-nonlinear pair, detailed deriva-
tions are given in the Appendix B.

Results and Discussions

The microcanonical variational sum of states curves are
calculated for reaction (3) using both methods described
above, The same potential surface is used as in the previous
study.? In Figure 3 the N(E, E) values obtained by Eq. (25)
are compared to the results using Eqs. (10) and (11) with
integration limit J*. Two results are in excellent agreement
except at extremely large R, Considering the two to three
orders of magnitude difference in the computing time be-
tween Eqgs. (11) and (25), these results suggest that it is
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Figure 3. N(E, R) curves for CsHsBr™ -system. Solid lines are
the results of Eq. (25), the direct calculation of N(E, R). The
dotted line represent the results of Eq. (10) using the /¥ values.

much.more efficient to use Eq. (25) when it is not necessary
to study the effect of the angular momentum.

Two transition states were observed for a late loosening
of the transitional modes (¢=1) as the energy increases,
one at a small internuclear distance and one at large inter-
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nuclear distance. The simultaneous existence of multiple tra-
nsition states is observed with system energies between 3.3
eV and 3.9 eV. The transition state switching (TSS) from
OTS to TTS occurs arcund £=35 eV as shown in Figure
3(c).

With early loosening of the transitional modes (¢=2), how-
ever, there exists only one TS and the OTS is the dominant
transition state at energies studied in this research. It is
due to the fact that the conversion of the transitional modes
from bending vibration to rotation and orbiting is rapid due
to early decrease of rotational hindrance as the reaction coo-
rdinate is extended. In a late loosening of the transitional
modes (@=1), the conversion from motion of bending vibra-
tion to rotation and orbiting is slow due to slow decrease
of rotational barrier as the reaction coordinate extended.
This decreases sum of states significantly in the region of
the small internuclear distance compared to the early loose-
ning of the transitional mode {¢=2) case. This is the reason
why this system yields TTS at a small internuclear distance
with late conversion.

We have also carried out same procedure for loosening
parameter ¢ =15 which have not been shown here. The re-
sult of parameter ¢= 1.5 always showed the average behavior
of two previous results ze., a=1 and ¢=2,

The N(E, j R) curves for a various values of J are shown
in Figure 4. At E=31 eV, the N(E, } R} curves show that
OTS is slightly dominant for all J values except J=300. At
E=33 eV, as shown in Figure 4(b), the TTS was preponde-
rant for / above 200, while, at below this J value the OTS
gave a slightly larger value for the sum of states. Figure
4(c) shows the N(E, ] R) curves at E=3.9 eV. At this energy,
the TTS was prevalent for J values above 200, while, at below
this f value, the OTS gave a slightly larger value for the
sum of states. Due to the (2/+1) factor in Eq. (10), the
shape of N(E, ] R) curves at large J determines the behavior
of N(E, R) curves, These results support the fact that the
OTS is dominant at £=3.1 eV, the TTS is emerging at
E=33 eV, and the TTS is the only transition state at
E=39 eV,

Conclusions and Remarks

In this study, the N(E, J R) curves were calculated using
the original FTST method of Wardlaw and Marcus, Eq. (10).
The angular momentum averaged results of N(E, R) curves
obtained from Eq. (11) were compared to the results using
Eq. (25) which was derived using the spherical polar coordi-
nates for orbiting motion and the Euler angle coordinates
for fragment rotations. The agreement between the two me-
thods was excellent.

The individual N(E, J R} curves support the behavior of
the angular momentum averaged N(E R) curves. An inter-
esting fact should be noted is that, due to (2/+1) factor
in Eq. (10), the high-J curves have more effect on the final
N(E, R) curve.

Microcanonical VIST calculations for the dissociation reac-
tion of bromobenzene cation demonstrate the existence of
multiple transition states. Late loosening of the transitional
modes leads to MTS at internal energy as low at E=3.3
eV and exhibits TSS as the energy increases. With a loos-
ening parameter a=2, there is only one TS which is the
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Figure 4. The effect of angular momentum of the C;HsBr* +sys-
tem.
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Appendix

A. Variable Reduction for /=0 Case

If /=0, then I=—j, and cos §,=—1. That is the A in
Eq. (11} becomes §(j—1I). The reference axis Xj for o and
g, is no longer defined. Euler diagram for the atom-nonlinear
polyatomic system in the zero angular momentum limit was
given in Figure 5. Writing 8,= (o;+¢;)/2, 8,~a—0j; and in-
troducing the function 8(G—{) in Eq. (5), a six-dimensional
integral is obtained.

pr=oe)= (o) %o~ [djataay [ ao, [[ 408G~ Do (e~ Ho.

(AD

After integrating over { and 8, one obtains
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Figure 5. Euler diagram depiciting the relationship between the
(x, 3 2) and (x', ¥, 2') Cartesian coordinate systems for the atom-
nonlinear polyatomic system at J=90.  lies along the z axis, j
along the opposite direction, and « is the projection of j on the
z” axis. Pairs of the two xy planes intersect along the lines of
nodes N” whose orientations are determined by the vectors IXx.
vy is equal to 28,

r-o(e) = (20201 [ [djnatt [ @0, 5~ Ho).  (A2)

Inserting Eq. (A2) into Eq. (4) yields the final equation

NCE, 0,R)=2"1(2n) %" f f j didxdY ] "d0,N(E'~ H)(A3)

B. Expressions for Linear-Nonlinear and Nonlinear-
Nonlinear Cases

For linear-nonlinear system, the Hamiltonian Can be writ-
ten as

H=B#*+Bf*+ B+ BP7+BP + V(R 6,0, v.6) (B1)

where y is the rotation angle of the nonlinear fragment
around R, and 6, is the rotation angle of the linear fragment
around R. In spherical-polar coordinates, the differential vol-
ume element dc for the transitional modes is given by

dr=dv,d, dr, ®B2)

where dr; is for the orbiting motion, dr; is for the linear
rotor, and dv; is for the nonlinear rotor, respectively. They
can be written by?®

do=2dl, (B3a)
dr,= idisglei (B3b)

e, Sin0dp dpidp dodody
3

(2m) (B3c)
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Inserting Eqs (B3a), (B3b), and (B3¢} to Eq. (12) yields the
following convolution integral between the vibrational sum
of states and rotational-orbital density of states:

NER)= ﬁﬁd&ﬂm a0, "sin odo [ do " dy

XN.LE=E,~ Vi(R, 0,0, v, 01 [aP.aPudP [21dt [25aj

X s[Er - (B!F +B_;) 2 +Bopa2 +Bhpbz +BoPc2) :I (B4)

where E, is equal to the rotational energy of the system.
Here we use Dirichlet Integral®* for evaluating the momen-
tum integral below.

JaPaap.ap [2an[2idj sLBR+ B+ BRI+ BB+ BP2)

- 8n £
15BBy/B.ByB: "

Inserting Eq. (BS) to Eq. (B4) and performing integration
of y yields the final equation for the linear-nonlinear par.

(BS)

1 8 £ n
N(E, R)=_2(2n)3 5, /EBE, nBaB ‘JOdEErm1051nﬁd&
x j:sinedej? dcpf:" GYN,LE—E,— V(R 0,4.v,0)] (BS)

where BB; and B,B:B. are rotational constants,
For nonlinear-nonlinear system, the Hamiltonian can be
written as

H=BJF +BalP812+B&1Pb12+Bt1Pc13
+BaPas? + ByPr)* + BoPr' + ViR 0y, 01, y1, 85, 02).  (B7)

The orbiting motion volume element dv, is given by Eq. (B3).
The rotational volume elements for two nonlinear rotors are
given using the Euler angles by

_ _sin®,dP,;dPydP,d0;ddidy: . _
dt,-'- (211)3 s J 2t3 (Ba)

Inserting Eqs. (B3) and (B8) into Eq. (12} yields

_ 1 L
N(ER) To J:dE,Jusm 06,

[(sin [ atn [t [Tav,

XN,LE—E, — V] {dP.,dP, dP.,dP.,dPy, dP., J' 2dl

X8[E,~ (B##*+ By P.\ 2+ By Pyt + -+ + By P )1 (BY)
where E, is equal to the rotational energy of the system.

Applying Dirichlet integral to the following momentum inte-
gral
IdPa1de1dPtldPQdezdP@IMI
X8[E,— (Bd*+ By Pof + By, Py 2+ +B,P,h) 1.

n 3
= y 1
Wﬁﬁf BBy E, (B10}

Inserting Eq. (B10) to Eq. (B9) and performing integration
of y, yields the final equation,

Jivoung Oh and Kihyung Song

__1 n £ "
N(Ev R) - 2(2“)5 GBN{B”BM "'Bn Iu dEEfajuSln eﬁe{

X [lstn o[ don[ atn[ dNAE~E~V)  ®BLD

where B; and B, By B, are rotational constants.

Acknowledgement, This paper was supported by NON
DIRECTED RESEARCH FUND, Korea Research Foundation,
1992,

References

-

. M. G. Evans and M. Polyanyi, Trans. Faraday Soc, 31,

875 (1935).

H. Eyring, J Chem. Phys, 3, 107 (1935).

H. Eyring and W. F. K. Wynne-Jones, J Chem. Phys.,

3, 492 (1935).

R. A. Marcus and O. K. Rice, J. Phys. Colloid Chem., 58,

894 (1951).

5. R. A. Marcus, [ Chem. Phys, 20, 4658 (1952).

6. H. M. Rosenstock, M. B. Wallenstein, A. L. Wahrhaftig,
and H, Eyring, Proc. Nail Acad Sci. USA, 38, 667
(1952).

7. D. M. Wardlaw and R. A. Marcus, Adv. Chem. Phys., 70,
231 (1988).

8. K. Song and W. J. Chesnavich, 7 Chem. Phys, 91, 4664
(1589).

9. K. Song and W. J. Chesnavich, /. Chem. Phys, 93, 5751
(1990).

10. W. ]. Chesnavich and M. T. Bowers, Prog. React. Kinel,
11, 137 (1982).

11. M. E. Grice, K. Song, and W. J. Chesnavich, J Phys.
Chem., 90, 3503 (1986).

12. I-C. Chen, W. H. Green }r., and C. B. Moore, J. Chem.
Phys, 89, 314 (1988).

13. W. J. Chesnavich, L. Bass, M. E. Grice, K. Song, and
D. A. Webb, QC.P.E, 8 557 (1988).

14. W. L. Hase, Acc. Chem. Res, 16, 258 (1983).

15. D, G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem.,
35, 159 (1984).

16. D. G. Truhlar A. D. Isaacson, and B. C. Garrett, in Theory
of Chemical Reaction Dynamics, Vol. IV, edited by M.
Baer (CRC Press, Boca Raton, Florida, 1985), p. 65.

17. W. J. Chesnavich, J. Chem. Phys, 84, 2615 (1986).

18. S. N. Rai and D. G. Truhlar, J Chem. Phys, 79, 6046
(1983).

19. D. M. Wardlaw and R. A. Marcus, Chem. Phys. Lett, 110,
230 (1984).

20. D. M. Wardlaw and R. A. Marcus, /. Chem. Phys, 83,

3462 (1985).

. D. M. Wardlaw and R. A. Marcus, /. Phys. Chen., 90,

5383 (1986).

. G. W. Koeppl, J Chem. Phys, 87, 5746 (1987).

. C. Lifshitz, F. Louage, V. Aviyente, and K. Song, /. Phys.

Chem., 95, 9298 (1991).

. 8. C. Smith, J Chem. Phys, 95, 3404 (1991).

S. J. Klippenstein, Chem. Phys. Lett, 170, 71 {1990).

S. J. Klippenstein, J Chem. Phys, 94, 6469 (1991).

S. I. Klippenstein, [ Chem. Phys., 97, 2406 (1992).

S. I. Klippenstein and R. A. Marcus, J Phys. Chem., 92,

S

-

N
p—

BI¥ER 8RN



Microcanonical Vaeriational Sum of States

3105 (1988).

29. S. J. Klippenstein and R. A. Marcus, /. Phys. Chem., 92,
5412 (1988).

30. S. C. Smith, J. Chem. Phys, 97, 2406 (1992).

31. H. Goldstein, Classical Mechanics, 2nd. ed. (Addison-Wes-
ley, Reading, MA, 1980).

Bull, Kovean Chem. Soc, Vol. 14, No. 3, 1993 411

32. K. Song, Ph. D. Dissertation, Texas Tech University,
1989,

33. E. E. Aubanel and D. M. Wardlaw, J Phys. Chem., 93,
3117 (1989).

34. R. C. Tolman, The Principles of Statistical Mechanics (Do-
ver, New York, 1979).



