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A formalism to calculate microcanonical variational transition state theory sum of states, N(E, 효), was derived using 

the Euler angle and spherical polar coordinate systems. This method was applied to the reaction C6H5Br - + -> 

C6H5+4-Br . We have an excellent agreement on N(、E,R) curves near the transition states between the results 

calculated either by the War이aw and Marcus method or by the present method. Usin용 a simple model potential 

surface, this reaction showed multiple transition states with the late conversion of the transitional mode. This reaction 

also showed transition state switching from orbiting (loose) transition state to tight transition state as the reaction 

energy is increased.

Introduction

Transition state theory (TST)1-3 usually assumes that the 

location of transition state (TS) is at the maximum of the 

minimum energy path (MEP). The rate constant, then, is 

calculated using the standard RRKM expression,4-6

椎)=N*" ⑴
hp(、E)

where N*(E—E()) is the sum of states of the TS with avail­

able energy equal to E—E& p(E) is the density of states 

of the reactants with energy E, and Eq is the activation en­

ergy. However, in the case where there is no reverse activa­

tion barrier, such as in the simple bond fission reactions, 

radical-radical and ion-molecule recombinations, and the de­

composition reactions of molecular ions, the location of the 

TS can no longer be determined by the usual way.7-9 A 

simple and well-established method is the application of the 

phase space theory (PST) which assumes that the TS is 

located at the maximum of the effective potential, and the 

properties of the TS pertains those of the fragments' rota­

tional and vibrational structures.10-12 This type of TS's is 

usually called as an orbiting (or loose) transition state (OTS) 

representing that the fragments are assumed freely orbiting 

with respect to each other due to the long distance between 

them. A package for this kind of calculations is already publi­

shed.13

A more rigorous way to determine the location of the TS 

would be using the variational criteria.14-16 In the variational 

transition state theory (VTST) methods, the reactant density 

of states is a fixed quantity, and hence the only thing needs 

to be calculated as a function of the reaction coordinate R 

is the sum of states in the numerator of Eq. (1). The varia­

tional criteria

BN(E-V(R);R) _n 6

where V(J?) is the reaction coordinate potential, is then ap­

plied to determine the location of the TS.

A number of VTST methods were suggested and used 

by many people.7-914-27 A flexible transition state theory 

(FTST) formalism based on the action-angle coordinates has 

been developed by Wardlaw and Marcus.7,19-21 This method 

includes a full implementation of angular momentum coupl­

ing between the rotations and orbiting motion of the frag­

ments, as well as total angular momentum conservation. 

Klippenstein and Marcus derived another expression using 

Euler angle coordinates.2829 For atom-diatom systems, Song 

and Chesnavich modified the Wardlaw-Marcus method using 

spherical polar coordinates.8,9 When only the angular momen­

tum averaged values are necessary to obtain, this method 

can save a great deal of computing time. Klippenstein sug­

gested a method which can use any internal coordinate such 

as the dissociating bond length as the reaction coordinate.25,26 

He demonstrated that this method can produce much lower 

rate constant than conventional center of mass distance reac­

tion coordinates. Smith derived an angular momentum re­

solved expression by doing the momentum space integral 

analytically.24,30

In this study, the method of Song and Chesnavich is ex­

tended using Euler angle coordinates so that it can be app­

lied to the reactions with nonlinear fragments. This method 

will be applied to the reaction.

C6H5Br+ -^C6H5++Br- (3)

which are simple bond cleavage reactions. Previous study 

on reaction (3) showed that there exist multiple transition 

state (MTS) at certain conditions.23 Transition state switching 

(TSS) from a loose, orbiting transition state (OTS) at low 

internal energies of the ion, to tight transition state (TTS) 

at high internal energies was demonstrated at zero angular 

momentum limit.

TSS may be understood in the following way. As the reac­

tants move along the reaction coordinates, a compromise oc­

curs between two factors-(a) The system available energy 

decreases as R is extended due to the reaction coordinate 

potential curve. This causes a decrease in N. (b) The transi­

tional mode frequencies decrease as R is extended due to 

the change of the motion from bending vibrations to rotations 

and orbitings. This increases N. At low energies the first 

factor is the dominant one. Hence the transition state occurs 

at very large R and is the OTS. At higher energies, the 
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two factor may offset each other and TSS is expected.

In this study, the sum of states curves for reaction (3) 

will be obtained without the restriction on angular momen­

tum. In order to achieve the angular momentum averaged 

N(E R) curve, the generalized method of Song and Chesna- 

vich8,9 will be used. The effect of the angular momentum 

of the final N(E R) curves are also studied for reaction (3).

The structure of this study is as follows. In Sec. II, the 

Wardlaw-Marcus method is described for atom-nonlinear 

fragments. An expression for angular-momentum-averaged 

N(E, R) calculations for systems with atom-nonlinear frag­

ments is also derived. The results and discussions for reac­

tion (3) are in Sec. III. Con시usive remarks are given in Sec. 

IV. Appendices are provided for details of the derivation 

of N(E, R) for linear-nonlinear and nonlinear-nonlinear frag­

ment cases and variable reduction in the Wardlaw-Marcus 

expression for J=0 case.

Theory

Wardlaw-Marcus Method
In the flexible transitions state theory (FTST) method、of 

Wardlaw-Marcus,719'21 it is assumed that the spectator (ie., 

conserved) degrees of freedom are separable from the tran­

sitional modes. Given this assumption, the sum of states N 

(E, J, R) can be expressed as a convolution between the vi­

brational sum of states of the spectator modes Nv and the 

angular momentum-conserved density of states of the transi­

tional mode p(“)；

N(E, J,R) = 成 - e) p(s J)de, (4)

where p(&/)de is the density of states of the transitional 

modes for the given J, N«、E' — Q is the number of quantum 

states in the spectator modes, and Ef being the available 

system energy above the zero-point energy Ez. To calculate 

J)de in Eq. (4), two sets of body-fixed coordinate axes 

are first defined, each fixed in a separating fragment.20 The 

origin of each system is located at the center of mass of 

that fragment, and when either fragment has some symmetry 

its coordinate axes are chosen to coincide with its symmetry 

axes. A third set of body fixed coordinates is also defined, 

fixed in the molecule as a whole. For the coordinates of 

the transitional modes the action-angle coordinates20,31 are 

then introduced.

The material in this section is grouped into three parts: 

In part 1, a set of action-angle variables suited to atom-non­

linear fragments is obtained. In the second part, the density 

of transitional states p(&/) and the classical Hamiltonian 

Htr for the transitional modes are expressed in terms of 

these vairables. Since the potential energy contribution to 

Htr is modeled in this study to be a function of the atom- 

nonlinear separation distances as well as the angle between 

the bromine atom and the benzene ring, a transformation 

from the action-angle variables to these internal coordinates 

is given in the last part.

Coordinates. For systems with atom-nonlinear frag­

ments, such as the reaction (3), the following system of coor­

dinates was introduced. This coordinate system is applicable 

to the systems with atom-nonlinear polyatomic fragment. Fir­

st, let (x y, z) denote a set of Cartesian coordinate axes fixed

(N”)
Hgure 1. Euler diagram depicting the relationship between the 

(X y, z),(匕and z") Cartesian coordinate systems 

for the atom-nonlinear polyatomic system. I lies along the z axis, 

j along the z' axis, and k is the projection of j on the zw axis. 

Pairs of the three xy planes intersect along the lines of nodes 

N‘, NL and whose orientations are determined by the vec­

tors IXj, IXk, k〉。, respectively; The angles (a, %, 0) are the 

Euler angles specifying the orientation of the primed system 

relative to the unprimed system, and the angles (Y, 9^, 0) are 

those specifying the orientation of the primed system relative 

to the doubly primed system.

in the A--X system, the z axis being chosen to lie along 

the relative orbital angular momentum action vector / of the 

fragments, as in Figure 1. The x axis is chosen to lie along 

a vector /Xy. The relative separation vector R along the line 

of centers of mass of the two fragments lies in the 

body-fixed xy plane and is oriented at an angle ① with re­

spect to the x axis ((자 is conjugate to /).

Two coordinate frames (xf, yr, z') and (xw,矿,z") are de­

fined on the fragment X. The atomic position vector 

for C6 atom of CeH5+ is assigned using the C6H5+-fixed (xwt 

矿,Z) Cartesian coordinate system. The double primed axes 

are chosen to diagonalize the CeH5+ inertia tensor. The prim­

ed system is chosen so that the z' axes lies along the vector 

j, and the xf axis lies along the intersection of xfy' and W 

planes, namely along Nm in Figure 1. The projection of j 

on the z and z" axes are denoted by jz and k, respectively. 

The separation vector Rm is chosen to lie along the xm axis 

of a (xw, ymt zm) system whose zm axis coincides with the 

z axis of the molecule-fixed (x, y, z) system. The origins of 

the unprimed, singly primed, and triply primed Cartesian 

systems are chosen to be the center of mass of C6H5+. The 

angles q and 8?, which is conjugate angle of l2t the z projec­

tion of /, specify the orientation of the body-fixed Gc, y, z) 

system with respect to a space fixed system. These coordi­

nates provide a set of variables (/, cu lZf 8, k, Y)

which specify the orientation of fragment X in space. Instead
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Figure 2. Various geometrical variables describing the C6HsBr+ 

system. C6-Br is the bond being dissociated and r* is the corres­

ponding "bond” distance. The angle 9 and r* determine the tran­

sitional mode potent询.R is the vector from CgH5+ center of 

mass to the Br atom and R is the reaction coordinate.

of (4,缶括 8), the variables (Jr a,Jz, p) are used by canonical 

transformation. The resulting action variables are / 人 / I, and 

k, and their respective conjugate angles are a,(功 a,-, and 

Y.

Density of Transitional States. The expression for 

pU/) is

P(& /) = (2tt) - 5<广 j …何MjdldKda弗竭da dY

(5) 

for a given value of /. The limits on the angle variables 

are 0 to 2n. The Jz integral is over the integral (—//), and 

the k integral is restricted by I k I o is a symmetry num­

ber which corrects for the overcounting of any indistinguish­

able configurations in these (0,2n) angle intervals. A(J") 

is unity when the triangle inequality is fulfilled

and zero otherwise. The Hamiltonian Hci for the transitional 

mode is written as

Ha=E，+乙*厂 + V", 9), ⑹

where |i is the reduced mass for relative motion of CeHs+ 

and Br ■, £r is the rotational energy of the C6H5+ fragment, 

and Vt is the potential energy function for the transitional 

modes. The arguments of Vt in Eq. (6) are given as follows: 

r* is the distance from C6 atom to the dissociating Br atom, 

and 0 is the angle between r* and the line passing through 

the two points, C6 and center of benzene ring,, as shown 

in Figure 2. When the fragment X is a symmetric top, its 

rotational energy Er of a fragment X has the form f/2IA + k2/2 
Irt where 4=414/(41The principal moments of inertia 

(Ia, 7b 2c) of a fragment are determined from its equilibrium 

geometry. In the case of C6Hs+ fragments, Ia and Ib are al­

most equal. Hence, CeH5+ is considered as an oblate sym­

metric top with Ia=Ib<Ic, which yields Ir<0.

Internal Coordinates. The internal coordinater r* and 

0, in which the transitional mode potential Vt is expressed, 

are determined from the action-angle coordinates as follows. 

By transforming Rm and 产財 to the (x, y, z) system, the coor­

dinates r*f and 0 are obtained by

宀니 R-시,

，、、户 s +产一&2 
cos(n—0) = ―으%一一---- .

2^6广

For given R, J, and six-dimension Monte Carlo point (A j, k, 
a/, %,Y) the vectors R and are obtained by application 

of the inverse rotation matrix ^-1.31

，&=4一'(％ %, 0M-1 (Y,為,0)/c6- ⑺

(由,0,0)R”. (8)

The first application of in Eq. (7) yields the intermediate 

vector r in a C6H5+-fixed (矿矶 z') system whose z! axis 

lies along j. This primed coordinates are rotationally related 

to 나le W, 矿, z") system by the Euler angles (Y, 編 0). The 

angle Y (conjugate to k) is the angle between the x,f and 

x' axes. The x' axis is lying along the line of nodes kXJ.
is the angle contained between the vectors 

k and j between the z" and zf axes). The second set 

of Euler angles (eg, %, 0) in Eq. (7) connects the (矿 *,2') 

and (x, y, z} systems: % (conjugate toy) is the angle between 

the x' and x axes, the latter lying along the line of nodes 

IXj;印=cosT(02—“一尹)/2加 is the angle contained be­

tween the vector / and j (2., between the zr axis and the 

z axis). The Euler angle a/ in Eq. (8) is conjugate to I and 

is the angle between the xm and x axes. Hc{ is specified by 

the variables (R’J, I, j, k, cq,(方,Y) and is independent of 0, a, 

P). Eq. (5) now becomes

p(& J) —(2/+1) (2n) 頌]…jdjdldKdq

and

N(E,J, &) =(2/+1) (四) -%厂：卜，由이"纯血£〃

XNJE-Hd)A(J,以、) (10)

This is the equation used to evaluate N(E,J, R) for atom- 

nonlinear polyatomic fragment systems using the FTST me­

thod of Wardlaw and Marcus.7,19~21 Since the evaluation of 

this equation requires a six-fold integration with boundary 

conditions that can often be quite complex, the integration 

are usually carried out using Monte Carlo techniques. A de­

tailed derivation for the case of/=0 is described in Appedix 

A.

The angular momentum averaged N(E, R) values can also 

be obtained by integrating Eq. (10) over /, i.e.,

N(E,R)=[dlN(EJ,R). (11)

The integration over J was done using the Showing points.

0,10,20, 50,100,200,…,700,尸

where J* is the integration limit described elsewhere.9
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Direct Calculation of N(E, R)

Given the FTST equations summarized above, the evalua­

tion of the angular momentum averaged microcanonical va­

riational sum of states N(E, R) can be carried out directly 

in the following manner: First, the quantity p(e), the rotatio­

nal density of states summed over the total angular momen­

tum J, can be obtained from Eq. (5) by integrating over/7,19-21

p(&) = •爾*电 j…jdJdbdjdldKdadBdjdm dN

XA(Z;；Z) &&—HQ (12)

Note that this integration covers the entire rotational-orbital 

phase space of the atom-nonlinear polyatomic fragment sys­

tem. Hence it can be rewritten using phase space volume 

셔em&its dxj as8,3

p(e)=矿牛女2以8(£—」稿).
(13)

The dxj can be written in terms of the action-angle coordi­

nate system used in Eq. (12), or in terms of spherical-polar 

coordinates for atom-linear fragments.8,32 For an atom-non­

linear polyatomic fragment system, the transitional mode 

Homiltonian 必 can be written, using Euler angle coordi­

nates,24,28-31,33 as

H广이2+BaP；+BR2+BR2+s(R，0, e) (14)

where Bi is the orbiting rotation constant for atom-nonlinear 

pair, Bat Bbt and Bc are the rotational constants for nonlinear 

fragment around the principal axes, Pa, R, and Pbt are the 

angular momentum components for the principal axes, R is 

the reaction coordinate, 9 is the angle between symmetry 

axis and reaction coordinate, and (|)is the rotation angle 

about symmetry axis. In spherical-polar coordinates, the or­

biting angular momentum I is defined by

F +鑫. (15)

Using the spherical polar coordinates given in Eq. (15), the 

differential volume element 妬 can be written as

dxi= (2n)-2 sin &4知/知 d&dg (16)

For the rotation of the nonlinear fragments, dx2 can be writ­

ten using the Euler angle coordinates, as

dx2~ (2n)-3 sin。曲说曲鸵dDwzd&d馭dwz (17)

The limits of integration over the angles %,饥，and 归 are 

0—n, 0—2n, and 0—2tt, respectively. The transformation 

from the Euler axes momenta to the principal axes momenta 

can be performed with Jc= l.24

力提 * {Pa> Pb> (18)

Using the properties of the 8-function, the simplification 

of Eq. (16) can be performed as follows.8,32 First, let &=L 

p^=0, and Oi — O, i.e.t place the particle initially on the space- 

fixed z axis. The angle 4>i can be chosen arbitrarily. It is 

necessary to perform the integration

Jdti8 [/—Z(/>9P />01,0i)] = Jdm 卩T(力虹如,3)](19)

to produce ds Here, A(x) is a hemisidal step function. The 

integration on the right-hand side can be written explicitly 

as

“亏 8 卩 T(处],0i)] =

(跚尸亦也屜쩨쎄 d시— 畑

"g(册矗)'] ㈣

Here, the integration over pQ1 and is equal to the area 

of the ellipse of Eq. (15) which is equal to n/2 sin &. The 

integration over(忧 yields 2n and the integration over 0i yie­

lds 2 because of the factor sin The result of Eq. (20) 

becomes P. By differentiating this over L Eq. (19) yields 21、 

Hence,妬 becomes

妬=2/弘 (21)

Inserting Eqs. (14), (17), (18), and (21) to Eq. (13) yields 

p(e)=o-1(2n)』如I sin Q^dpadpbdpcd02d\^28(e — .(22)

The angle V2 can be integrated since the configuration of 

the system can be defined with the two angles, 02 and 02. 

This integration yields 2n. Eq. (4) now becomes the convolu­

tion integral between the vibrational sum of, states and rota­

tional-orbital density of states:

N(E, R)=(泰纣 L써;sin&d&L £施\优£一£一& <t>)]

X싸列 6住— S+RR2+3R2+B<R2)](23)

Integration over the momenta, I, pa> g and pc can be done 

by the Dirichlet Integral.34 This yields

饥씨2叫 8[e- W+B^+B^ +B^2)]

Inserting Eq. (24) to Eq. (23) yields final equation for the 

microcanonical sum of states

ME，R)F函扁而麟評

fit f2n
序血d虬』政0—£一叽(&, 9,0)1 (25)

For systems other than atom-nonlinear pair, detailed deriva­

tions are given in the Appendix B.

Results and Discussions

The microcanonical variational sum of states curves are 

calculated for reaction (3) using both methods described 

above. The same potential surface is used as in the previous 

study.23 In Figure 3 the N(.E, R) values obtained by Eq. (25) 

are compared to the results using Eqs. (10) and (11) with 

integration limit Two results are in excellent agreement 

except at extremely large R. Considering the two to three 

orders of magnitude difference in the computing time be­

tween Eqs. (11) and (25), these results suggest th거 it is
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Figure 3. N(E,R) curves for CeH5Br+* system. Solid lines are 

the remits of Eq. (25), the direct calculation of N(、& R). The 

dotted line represent the results of Eq. (10) using the J* values.

much more efficient to use Eq. (25) when it is not necessary 

to study the effect of the angular momentum.

Two transition states were observed for a late loosening 

of the transitional modes (a =1) as the energy increases, 

one at a small intemuclear distance and one at large inter-

nuclear distance. The simultaneous existence of multiple tra­

nsition states is observed with system energies between 3.3 

eV and 3.9 eV. The transition state switching (TSS) from 

OTS to TTS occurs around £=3.5 eV as shown in Figure 

3(c).

With early loosening of the transitional modes (q=2), how­

ever, there exists only one TS and the OTS is the dominant 

transition state at energies studied in this research. It is 

due to the fact that the conversion of the transitional modes 

from bending vibration to rotation and orbiting is rapid due 

to early decrease of rotational hindrance as the reaction coo­

rdinate is extended. In a late loosening of the transitional 

modes (“ = 1), the conversion from motion of bending vibra­

tion to rotation and orbiting is slow due to slow decrease 

of rotational barrier as the reaction coordinate extended. 

This decreases sum of states significantly in the region of 

the small intemuclear distance compared to the early loose­

ning of the transitional mode 0=2) case. This is the reason 

why this system yields TTS at a small intemuclear distance 

with late conversion.

We have also carried out same procedure for loosening 

parameter a = 1.5 which have not been shown here. The re­

sult of parameter a = 1.5 always showed the average behavior 

of two previous results i.e., a = l and a = 2.

The N(E, J, R) curves for a various values of J are shown 

in Figure 4. At E—3.1 eV, the N(E,J,R) curves show that 

OTS is slightly dominant for all J values except J=300. At 

E=3.3 eV, as shown in Figure 4(b), the TTS was preponde­

rant for J above 200, while, at below this J value the OTS 

gave a slightly larger value for the sum of states. Figure 

4(c) 아lows 나｝e N(E, J, R) curves at E=3.9 eV. At this energy, 

the TTS was prevalent for J values above 200, while, at below 

this J value, the OTS gave a slightly larger value for the 

sum of states. Due to the (2/+1) factor in Eq. (10), the 

shape of N(E, J, R) curves at large J determines the behavior 

of N(E, R) curves. These results support the fact that the 

OTS is dominant at E=3.1 eV, the TTS is emerging at 

E = 3.3 eV, and the TTS is the only transition state at 

E = 3.9 eV.

Conclusions and Remarks
In this study, the N(E, J, &) curves were calculated using 

the original FTST method of Wardlaw and Marcus, Eq. (10). 

The angular momentum averaged results of N(E, R) curves 

obtained from Eq. (11) were compared to the results using 

Eq. (25) which was derived using the spherical polar coordi­

nates for orbiting motion and the Euler angle coordinates 

for fragment rotations. The agreement between the two me­

thods was excellent.

The individual N(E, J, /?) curves support the behavior of 

the angular momentum averaged N(E,R) curves. An inter­

esting fact should be noted is that, due to (2/4-1) factor 

in Eq. (10), the high-/ curves have more effect on the final 

N(E, R) curve.

Microcanonical VTST calculations for the dissociation reac­

tion of bromobenzene cation demonstrate the existence of 

multiple transition states. Late loosening of the transitional 

modes leads to MTS at internal energy as low at £=3.3 

eV and exhibits TSS as the energy increases. With a loos­

ening parameter a = 2t there is only one TS which is the
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Appendix

A. Variable Reduction for /=0 Case
If ・/=0, then 1= —j, and cos %= — 1. That is the A in 

Eq. (11) becomes 8(;—/). The reference axis IXj for Oi and 

Oj is no longer defined. Euler diagram for the atom-nonlinear 

polyatomic system in the zero angular momentum limit was 

given in Figure 5. Writing &= ((* + %)/2, 秘=(力一(저, and in­

troducing the function in Eq. (5), a six-dimensional 

integral is obtained.

P/=o(e) = (2兀) t矿 1 j... J由이亦小/卩& —上£ •

(Al)

After integrating over I and 0击 one obtains

Figure 5. Euler diagram depiciting the relationship between the 

(xry, z) and (xf, y\ z') Cartesian coordinate systems for the atom- 

nonlinear polyatomic system at J=0. I lies along the z axis, j 

along the opposite direction, and k is the projection of j on the 

z" axis. Pairs of the two xy planes intersect along the lines of 

nodes N" whose orientations are determined by the vectors /Xk. 
V is equal to 20s.

p7=o(e) = (2n) -3q- ffdjdKdY£dOs S(e -Hd). (A2)

Inserting Eq. (A2) into Eq. (4) yields the final equation

N(E, 0,R) 勿协，时為M(E'—HM3)

B. Expressions for Unear-Nonlinear and Nonlinear- 
Nonlinear Cases

For linear-nonlinear system, the Hamiltonian Can be writ­

ten as

H=아조+Bj2+3R2+BP，2+BR2十 VKR 0, Q W，0/) (Bl) 

where y is the rotation angle of the nonlinear fragment 

around R, and ft is the rotation angle of the linear fragment 

around R. In spherical-polar coordinates, the differential vol­

ume element dx for the transitional modes is given by

dx—dxid^dxz (B2)

where 妬 is for the orbiting motion,知 is for the linear 

rotor, and dx3 is for the nonlinear rotor, respectively. They 

can be written by8,32

dqfdl, (B3a)

必=2曲si碧些 (B3b)

虹sine曲誓縉蜘W (B3c) 
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Inserting Eqs (B3a), (B3b), and (B3c) to Eq. (12) yields the 

following convolution integral between the vibrational sum 

of states and rotational-orbital density of states:

I fE fn /* n /,2n f2n
ME，R)= 晶須丄삐。sin 04e,]osin 岫 ，虬 W

XM〔E—E,— K(R, 0, <p, W，&)〕jdP°dR0R^Idl^jdj

X8L£r-(时+■昌)2+B，R2+WJ+rr2)] (B4) 

where Er is equal to the rotational energy of the system. 

Here we use Dirichlet Integral34 for evaluating the momen­

tum integral below.

(B5)

jdP皿iRf21dl\2jdj 6 ㈤2+耳产+3。已 2+b血 2+&R2] 

______ 8끈 r 5/2

Inserting Eq. (B5) to Eq. (B4) and performing integration 

of v yields the final equation for the linear-nonlinear par.

ME 2為3 15B同寫砧丄蜘用严 으。어

X J；siH 0rf0J。(씨。-瓦 —Vt(R, 8,4>, v，0/) ] (B6) 

where BBj and &&& are rotational constants.

For nonlinear-nonlinear system, the Hamiltonian can be 

written as

+8此/+8必U+&2R22+ Vt(R, 0b 板 <t>2)- (B7)

The orbiting motion volume element di】 is given by Eq. (B3). 

The rotational volume elements for two nonlinear rotors are 

given using the Euler angles by

• _ sin& dP^i dPbi dPq d0 _n n me
d"乌— (2tt)3 ,」—(B8)

Inserting Eqs. (B3) and (B8) into Eq. (12) yields

N(")= 顶耘 JXRnW어

fn 「2jt f2n 件
I sin&id&J dtpij 肉可

〉ME-E,-VjjdF“ dPbl dPn dPa2 dPb2 dPa J2ldl

〉〈6旧一(时+8""+%%2+... +%琅)](B9) 

where Er is equal to the rotational energy of the system. 

Applying Dirichlet integral to the following momentum inte- 

gr지

JdR/R/Rid% 아农妃2 j 의成

X8[£r- W+BM+BblP^+- +瓦2冶)丄

E? GIO)

Inserting Eq. (BIO) to Eq. (B9) and performing integration 

of 屮2 yields the final equation.

ME R* = 2(i)5 6B[、/B%B” Io 四띠°sin 峽

X J^sfn 02^02 Jo °。J： £姻 Jo WiM(E -毎 ~Vt) (Bll)

where Bi and BaiBbi "Bc2 are rotational constants.
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