• Title/Summary/Keyword: chemical states

Search Result 850, Processing Time 0.029 seconds

The effects of drag reducing polymers on flow stability : Insights from the Taylor-Couette problem

  • Dutcher, Cari S.;Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.213-223
    • /
    • 2009
  • Taylor-Couette flow (i.e., flow between concentric, rotating cylinders) has long served as a paradigm for studies of hydrodynamic stability. For Newtonian fluids, the rich cascade of transitions from laminar, Couette flow to turbulent flow occurs through a set of well-characterized flow states (Taylor Vortex Flow, wavy Taylor vortices, modulated wavy vortices, etc.) that depend on the Reynolds numbers of both the inner and outer cylinders ($Re_i$ and $Re_o$). While extensive work has been done on (a) the effects of weak viscoelasticity on the first few transitions for $Re_o=0$ and (b) the effects of strong viscoelasticity in the limit of vanishing inertia ($Re_i$ and $Re_o$ both vanishing), the viscoelastic Taylor-Couette problem presents an enormous parameter space, much of which remains completely unexplored. Here we describe our recent experimental efforts to examine the effects of drag reducing polymers on the complete range of flow states observed in the Taylor-Couette problem. Of particular importance in the present work is 1) the rheological characterization of the test solutions via both shear and extensional (CaBER) rheometry, 2) the wide range of parameters examined, including $Re_i$, $Re_o$ and Elasticity number E1, and 3) the use of a consistent, conservative protocol for accessing flow states. We hope that by examining the stability changes for each flow state, we may gain insights into the importance of particular coherent structures in drag reduction, identify simple ways of screening new drag reducing additives, and improve our understanding of the mechanism of drag reduction.

Study on the Unsuitable Case for the Hierarchy of the Curriculum through the Analysis of the Science Teaching-Learning Lesson Plan Focused on 'Three States of Matter' Unit of the 7th Grade (과학과 교수.학습 과정안의 분석을 통한 교육 과정 위계 부적합 사례 연구 - 7학년 물질의 세 가지 상태)

  • Seo, Min-Hee;Choi, Won-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.784-792
    • /
    • 2009
  • In this study, we investigated the unsuitable cases for the hierarchy of the curriculum in science 'teaching-learning lesson plan' which is on the web site of the each city's support center for teaching and learning and Seoul Science Park with a purpose of giving helpful data for science teachers at lessons. The investigation is limited to 'Three states of matter' unit for the 7th grade and the content elements used at analysis was the "state changes of matter", "molecule" and "molecular model". The case found for unsuitable case for the hierarchy of the curriculum was phase equilibrium, ice crystal theory, peculiar property of water, classification of solid, thermal energy and physical change at the "state changes of matter". While the "molecular model" showed molecular motion and density. On the other hand, no case was found at "molecule".

The Analytic Gradient with a Reduced Molecular Orbital Space for the Equation-of-Motion Coupled-Cluster Theory: Systematic Study of the Magnitudes and Trends in Simple Molecules

  • Baek, Gyeong Gi;Jeon, Sang Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.720-726
    • /
    • 2000
  • The analytic gradient method for the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) energy has been extended to employ a reduced molecular orbital (MO) space. Not only the innermost core MOs but also some of the outermost virtua l MOs can be dropped in the reduced MO space, and a substantial amount of computation time can be reduced without deteriorating the results. In order to study the magnitudes and trends of the effects of the dropped MOs, the geometries and vibrational properties of the ground and excited states of BF, CO, CN, N2, AlCl, SiS, P2, BCl, AIF, CS, SiO, PN and GeSe are calculated with different sizes of molecular orbital space. The 6-31 G* and the aug-cc-pVTZ basis sets are employed for all molecules except GeSc for which the 6-311 G* and the TZV+f basis sets are used. It is shown that the magnitudes of the drop-MO effects are about $0.005\AA$ in bond lengths and about 1% on harmonic frequencies and IR intensities provided that the dropped MOs correspond to (1s), (1s,2s,2p), an (1s,2s,2p,3s,3p) atomic orbitals of the first, the second, and the third row atoms, respectively. The geometries and vibrational properties of the first and the second excited states of HCN and HNC are calculated by using a drastically reduced virtual MO space as well as with the well defined frozen core MO space. The results suggest the possibility of using a very smalI MO space for qualitative study of valence excited states.

Theoretical Study of the Reaction Mechanism for SiF2 Radical with HNCO

  • Hou, Li-Jie;Wu, Bo-Wan;Kong, Chao;Han, Yan-Xia;Chen, Dong-Ping;Gao, Li-Guo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3738-3742
    • /
    • 2013
  • The reaction mechanism of $SiF_2$ radical with HNCO has been investigated by the B3LYP method of density functional theory(DFT), while the geometries and harmonic vibration frequencies of reactants, intermediates, transition states and products have been calculated at the B3LYP/$6-311++G^{**}$ level. To obtain more precise energy result, stationary point energies were calculated at the CCSD(T)/$6-311++G^{**}$//B3LYP/$6-311++G^{**}$ level. $SiF_2+HNCO{\rightarrow}IM3{\rightarrow}TS5{\rightarrow}IM4{\rightarrow}TS6{\rightarrow}OSiF_2CNH(P3)$ was the main channel with low potential energy, $OSiF_2CNH$ was the main product. The analyses for the combining interaction between $SiF_2$ radical and HNCO with the atom-in-molecules theory (AIM) have been performed.

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

Rovibrational Energy Transitions and Coupled Chemical Reaction Modeling of H+H2 and He+H2 in DSMC

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.347-359
    • /
    • 2015
  • A method of describing the rovibrational energy transitions and coupled chemical reactions in the direct simulation Monte Carlo (DSMC) calculations is constructed for $H(^2S)+H_2(X^1{\Sigma}_g)$ and $He(^1S)+H_2(X^1{\Sigma}_g)$. First, the state-specific total cross sections for each rovibrational states are proposed to describe the state-resolved elastic collisions. The state-resolved method is constructed to describe the rotational-vibrational-translational (RVT) energy transitions and coupled chemical reactions by these state-specific total cross sections and the rovibrational state-to-state transition cross sections of bound-bound and bound-free transitions. The RVT energy transitions and coupled chemical reactions are calculated by the state-resolved method in various heat bath conditions without relying on a macroscopic properties and phenomenological models of the DSMC. In nonequilibrium heat bath calculations, the state-resolved method are validated with those of the master equation calculations and the existing shock-tube experimental data. In bound-free transitions, the parameters of the existing chemical reaction models of the DSMC are proposed through the calibrations in the thermochemical nonequilibrium conditions. When the bound-free transition component of the state-resolved method is replaced by the existing chemical reaction models, the same agreement can be obtained except total collision energy model.

Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells

  • Jang, Inseok;Song, Kyungho;Park, Jun-Hwan;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2883-2888
    • /
    • 2013
  • To enhance the power conversion efficiency of dye-sensitized solar cell (DSSC), the surface of titanium dioxide ($TiO_2$) photoelectrode was modified by hydroxylation treatment with $NH_4OH$ solution at $70^{\circ}C$ for 6 h. The $NH_4OH$ solutions of various concentrations were used to introduce the hydroxyl groups on $TiO_2$ surface. As the concentration of $NH_4OH$ was increased, the short-circuit current density ($J_{SC}$) value and conversion efficiency of solar cells were increased because the amount of adsorbed dye molecules on $TiO_2$ surface was increased. As a result of the surface modification to introduce hydroxyl groups, the concentration of adsorbed dye on the $TiO_2$ surface could be improved up to 32.61% without the changes of morphology, surface area and pore volume of particles. The morphology, the specific surface area, the pore volume and the chemical states of $TiO_2$ surface were characterized by using FE-SEM, $N_2$ adsorption-desorption isotherms and XPS measurements. The amount of adsorbed dye and the performance of fabricated cells were analyzed by using UV-Vis absorption spectroscopy and solar simulator.

Switching and sensing molecular spins by chemical reactions on metal surfaces

  • Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Controlling and sensing spin states of magnetic molecules such as metallo-porphyrins at the single molecule level is essential for spintronic molecular device applications. Axial coordinations of diatomic molecules to metallo-porphyrins also play key roles in dynamic processes of biological functions such as blood pressure control and immune response. However, probing such reactions at the single molecule level to understand their physical mechanisms has been rarely performed. Here we present on our single molecule association and dissociation experiments between diatomic and metallo-porphyrin molecules on Au(111) describing its adsorption structures, spin states, and dissociation mechanisms. We observed bright ring shapes in NO adsorbed metallo-porphyrin compelxes and explained them by considering tilted binding and precession motion of NO. Before NO exposure, Co-porphryin showed a clear zero-bias peak in scanning tunneling spectroscopy, a signature of Kondo effect in STS, whereas after NO exposures it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature implying that the Kondo effect was switched off by binding of NO. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses. From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances. Our study shows that single molecule association and dissociation can be used to probe spin states and reaction mechanisms in a variety of axial coordination between small molecules and metallo-porphyrins.

  • PDF

A Study of Nitric Oxide Oxidation Catalyst Using Non-noble Metals (비귀금속계 금속을 이용한 일산화질소 산화 촉매 연구)

  • Shin, JungHun;Hong, SungChang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.385-392
    • /
    • 2021
  • In this study, impact of Co proportion and calcination temperature of ceria on the Co/CeO2 was analyzed by comparing nitrogen monoxide oxidation performance of various catalysts and their physico-chemical properties. The structural properties of each catalyst were studied by XRD and BET analysis, and the surface crystal states of cobalt were proposed according to the surface density. Oxidation states of elements were observed through Raman and XPS analysis, and the relationship between typical oxidation states and nitrogen monoxide oxidation performance was designed. Through H2-TPR, oxygen-transferring capacity due to changes in the characteristics of catalysts were identified, and activation sites (Co3+) for oxidation were suggested.

A Study on the Electronic Structures of Li Intercalated Vanadium Sulfide and Oxide (Li의 첨가에 따른 Vanadium의 유화물과 산화물의 전자상태계산에 관한 연구)

  • Jung, Hyun-Chul;Kim, Hui-Jin;Won, Dae-Hee;Yoon, Dong-Joo;Kim, Yang-Soo;Kim, Byung-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.604-608
    • /
    • 2008
  • The layered compounds vanadium disulfide($VS_2$) and vanadium dioxide($VO_2$) intercalated with Li are investigated for using the Discrete Variational $(DV)-X{\alpha}$ molecular orbital method. The chemical bonding properties of the atoms were examined by bond overlap population of electronic states. The plot of density of states supports the covalent bonding properties by showing the overlap between the atoms. There is a strong tendency of covalent bonding between V-S and V-O. The intensity of covalent bonding of $VS_2$ is stronger than $VO_2$. The net charge of $LiVO_2$ is higher than that of $LiVS_2$. This results of the calculation of $VO_2$ and $VS_2$ indicate that $(DV)-X{\alpha}$ method can be widely applied in the new practical materials.