Browse > Article
http://dx.doi.org/10.14478/ace.2021.1045

A Study of Nitric Oxide Oxidation Catalyst Using Non-noble Metals  

Shin, JungHun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University)
Hong, SungChang (Department of Environmental Energy Engineering, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.32, no.4, 2021 , pp. 385-392 More about this Journal
Abstract
In this study, impact of Co proportion and calcination temperature of ceria on the Co/CeO2 was analyzed by comparing nitrogen monoxide oxidation performance of various catalysts and their physico-chemical properties. The structural properties of each catalyst were studied by XRD and BET analysis, and the surface crystal states of cobalt were proposed according to the surface density. Oxidation states of elements were observed through Raman and XPS analysis, and the relationship between typical oxidation states and nitrogen monoxide oxidation performance was designed. Through H2-TPR, oxygen-transferring capacity due to changes in the characteristics of catalysts were identified, and activation sites (Co3+) for oxidation were suggested.
Keywords
Nitric oxide; NO; Oxidation; Co/$CeO_2$; Cobalt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Krocher, Chapter 9 Aspects of catalyst development for mobile urea-SCR systems - from vanadia-Titania catalysts to metal-exchanged zeolite, Stud. Surf. Sci. Catal., 171, 261-289 (2007).   DOI
2 R. Krzyzynska and D. Hutson, Effect of solution pH on SO2 , NOx, and Hg removal from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber, J. Air Waste Manage. Assoc., 62, 212-220 (2012).   DOI
3 M. S. Kang, J. Shin, T. U. Yu, and J. Hwang, Simultaneous removal of gaseous NOx and SO3 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide, Chem. Eng. J., 381, 122601 (2020).   DOI
4 M. D. Hutson, R. Krzyzynska, and R. K. Srivastava, Simulataneous removal of SO2 , NOx and Hg from coal flue gas using a NaClO2 -enhanced wet scrubber, Ind. Eng. Chem. Res., 47, 5825-5831 (2008).   DOI
5 S. Adjimi, J. M. Gracia-vargas, J. A. Diaz, L. Retailleau, S. Gil, M. Pera-Titus, Y. Guo, and A. Giroir-Fendler, Highly efficient and stable Ru/K-OMS-2 catalyst for NO oxidation, Appl. Catal. B: Environ., 219, 459-466 (2017).   DOI
6 Y. Liang, X. Ding, J. Dai, M. Zhao, L. Zhong, J. Wang, and Y. Chen, Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce, Catal. Today, 327, 64-72 (2019).   DOI
7 G. Qi and R.T. Yang, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst, J. Catal., 217, 434-441 (2003).   DOI
8 N. Akter, S. Zhang, J. Lee, D. H. Kim, J. A. Boscoboinik, and T. Kim, Selective catalytic reduction of NO by ammonia and NO oxidation over CoOx/CeO2 catalysts, Mol. Catal., 482, 110664 (2020).   DOI
9 P. Gawade, B. Bayram, A. M. C. Alexander, and U. S. Ozkan, Preferential oxidation of CO (PROX) over CoOx/CeO2 in hydrogen-rich streams: Effect of cobalt loading, Appl. Catal. B: Environ., 128, 21-30 (2012).   DOI
10 M. P. Woods, P. Gawade, B. Tan, and U. S. Ozkan, Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles, Appl. Catal. B: Environ., 1-2, 28-35 (2010).
11 L. Qiu, Y. Wang, D. Pang, F. Ouyang, C. Zhang, and G. Cao, Characterization and catalytic activity of Mn-Co/TiO2 catalysts for NO oxidation to NO2 at low temperature, Catalysts, 6(1), 9 (2016).   DOI
12 D. Jampaiah, K. M. Tur, S. J. Ippolito, Y. M. Sabri, J. Tardio, S. K. Bhargava, and B. M. Reddy, Structure characterization and catalytic evaluation of transition and rare earth metal doped ceria-based solid solutions for elemental mercury oxidation, RCS Adv., 3, 12963 (2013).
13 K. Hauff, U. Tuttlies, G. Eigenberger, and U. Nieken, Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst - Experimental reults, Appl. Catal. B: Environ., 123-124, 107-116 (2012).   DOI
14 X. Li, S. Zhang, Y. Jia, X. Liu, and Q. Zhong, Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts, J. Nat. Gas Chem., 1, 17-24 (2012).
15 D. Y. Yoon, E. Lim, Y. J. Kim, J. H. Kim, T. Ryu, S. Lee, B. K. Cho, I. S. Nam, J. W. Choung, and S. Yoo, NO oxidation activity of Ag-doped perovskite catalysts, J. Catal., 319, 182-193 (2014).   DOI
16 Z. Zhu, G. Lu, Z. Zhang, Y. Guo, Y. Guo, and Y. Wang, Highly active and stable Co3O4 /ZSM-5 catalyst for propane oxidation: Effect of the preparation method, ACS Catal., 6, 1154-1164 (2013).
17 P. S. Metkar, M. P. Harold, and V. Balakotaiah, Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations, Appl. Catal. B: Environ., 111-112, 67-80 (2012).   DOI
18 I. Boscarato, N. Hickey, J. Kaspar, M. V. Prati, and A. mariani, Green shipping: Marine engine pollution abatement using a combined catalyst/seawater scrubber system. 1. effect of catalyst, J. Catal., 328, 248-257 (2015).   DOI
19 L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Oxidation of nitric oxide to nitrogen dioxide over Ru catalyst, Appl. Catal. B: Environ., 1-2, 224-231 (2009).
20 X. Xie, Y Li, Z.Q. Liu, M. Haruta, and W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature, 458, 746-749 (2009).   DOI
21 X. Chang, G. Lu, Y. Guo, Y. Wang, and Y. Guo, A high effective adsorbent of NOx: Preparation, characterization and performance of Ca-beta zeolites, Microporous Mesoporous Mater., 165, 113-120 (2013).   DOI
22 M. F. Irfan, J. H. Goo, and S. D. Kim, Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process, Appl. Catal. B: Environ., 3-4, 267-274 (2008).
23 M. M. Yung, E. M. Holmgreen, and U. S. Uzkan, Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide, J. Catal., 247, 356-367 (2007).   DOI
24 C. Q. Lv, C. Liu, and G. C. Wang, A DFT study of methanol oxidation on Co3O4 , Catal. Commun., 45, 83-90 (2014).   DOI
25 H. F. Wang, R. kavanagh, Y. L. Guo, Y. Guo, G. Lu, and P. Hu, Origin of extraordinarily high catalytic activity of Co3O4 and Its morphological chemistry for CO oxidation at low temperature, J. Catal., 296, 110-119 (2012).   DOI
26 J. Xu, G. Lu, Y. Guo, Y. Guo, and X. Q. Gong, A highly effective catalyst of Co-CeO3 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx strage catacity, Appl. Catal. A: Gen., 535, 1-8 (2017).   DOI