• Title/Summary/Keyword: chemical regime

Search Result 160, Processing Time 0.02 seconds

Absorption of Carbon Dioxide into Aqueous AMP Solutions

  • So, Won-Seob;Suh, Dong-Soo;Park, Moon-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 1998
  • The rates of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) were measured using a semibatch stirred vessel with a plane gas-liquid interface at $25^{\circ}C.$ The absorption rates under the fast reaction regime were analysed using chemical absorption theory. The reaction was found to be first order with respect to both $CO_2$ and the amine.

  • PDF

Absorption of Carbon Dioxide into Aqueous AMP Solutions

  • Won Seob So;Don
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 1993
  • The rates of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1 propanol (AMP) were measured using a semibatch stirred vessel with a plane gas-liquid interface at $25^{\circ}C$. The absorption rates under the fast reaction regime were analysed using chemical absorption theory. The reaction was found to be first order with respect to both $CO_2$ and the amine.

  • PDF

Characteristics of Products in the Reaction 40 MeV/nucleon $^{14}N+Ag$

  • Chung, Yong-Hee;Porile, N. T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.971-975
    • /
    • 1994
  • Cross sections and recoil properties have been measured for the fragments produced in the interaction of silver with 40 MeV/nucleon $^{14}N$ ions using off-line ${\gamma}$-ray spectroscopy. The data were used to obtain the isobaric-yield distribution, the mass yield distribution, and the fractional momentum transfer. The values of forward-to-backward ratios were measured to be very large, indicating that substantial momentum transfer occurs at this energy regime. The results are compared with other studies of the interaction of silver with intermediate-energy heavy ions.

Evaluation of Microcanonical Rate Constants by Semiclassical Boundary Conditions : Early Asymptotic Analysis

  • Sungyul Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.538-541
    • /
    • 1992
  • An approximate scheme for evaluating total reaction probability is proposed. Semiclassical boundary conditions are imposed well before the asymptotic region in the reactant and product channels to calculate the Green's function and its derivatives. Propagations are confined to a limited regime near the activated complex. Calculations are made for one dimensional Eckart barrier model of H + $H_2$ reaction. Implications of the procedure in multi-dimensional systems are discussed.

Modeling of flux enhancement in presence of concentration polarization by pressure pulsation during laminar cross flow ultrafiltration

  • Kumar, Kamal;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.253-271
    • /
    • 2010
  • A theoretical study for the flux enhancement by pulsation of transmembrane pressure is presented for osmotic pressure controlled ultrafiltration under laminar flow regime. The transient velocity profile is solved analytically using Green's function method. Time dependent convective diffusive equation is solved to quantify the membrane surface concentration and the permeate flux, numerically. The effects of the amplitude and frequency of pulsation on flux, surface concentration and observed retention are studied.

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

Effects of External Current Constraint on the Belousov-Zhabotinskii System Measured by a Pt Electrode

  • Wei, Guoying;Jin, Yongdong;Ge, Hongliang;Luo, Jiuli
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.543-547
    • /
    • 2005
  • The Belousov-Zhabotinskii system measured by a Pt electrode is investigated under external electrode current constraint. A dynamical analysis of the electrode reaction phase has been made by means of a linearized stability criterion valid for three-variable system. It turns out that limit cycle oscillatory regime and dynamical behaviors of the electrode reaction phase have been degenerated under periodical electrode current.

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

Viscosity and Diffusion Constants Calculation of n-Alkanes by Molecular Dynamics Simulations

  • Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1590-1598
    • /
    • 2003
  • In this paper we have presented the results for viscosity and self-diffusion constants of model systems for four liquid n-alkanes ($C_{12}, C_{20}, C_{32}, and C_{44}$) in a canonical ensemble at several temperatures using molecular dynamics (MD) simulations. The small chains of these n-alkanes are clearly $<{R_{ee}}^2>/6<{R_g}^2>>1$, which leads to the conclusion that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime. Calculated viscosity ${\eta}$ and self-diffusion constants D are comparable with experimental results and the temperature dependence of both ${\eta}$ and D is suitably described by the Arrhenius plot. The behavior of both activation energies, $E_{\eta}$ and $E_D$, with increasing chain length indicates that the activation energies approach asymptotic values as n increases to the higher value, which is experimentally observed. Two calculated monomeric friction constants ${\zeta}$ and ${\zeta}_D$ give a correct qualitative trend: decrease with increasing temperature and increase with increasing chain length n. Comparison of the time auto-correlation functions of the end-to-end vector calculated from the Rouse model for n-dodecane ($C_{12}$) at 273 K and for n-tetratetracontane ($C_{44}$) at 473 K with those extracted directly from our MD simulations confirms that the short chain n-alkanes considered in this study are far away from the Rouse regime.