• Title/Summary/Keyword: chemical profile

검색결과 801건 처리시간 0.023초

인공신경망을 활용한 CMP 컨디셔닝 시스템 설계 변수에 따른 컨디셔닝 밀도의 불균일도 분석 (Nonuniformity of Conditioning Density According to CMP Conditioning System Design Variables Using Artificial Neural Network)

  • 박병훈;이현섭
    • Tribology and Lubricants
    • /
    • 제38권4호
    • /
    • pp.152-161
    • /
    • 2022
  • Chemical mechanical planarization (CMP) is a technology that planarizes the surfaces of semiconductor devices using chemical reaction and mechanical material removal, and it is an essential process in manufacturing highly integrated semiconductors. In the CMP process, a conditioning process using a diamond conditioner is applied to remove by-products generated during processing and ensure the surface roughness of the CMP pad. In previous studies, prediction of pad wear by CMP conditioning has depended on numerical analysis studies based on mathematical simulation. In this study, using an artificial neural network, the ratio of conditioner coverage to the distance between centers in the conditioning system is input, and the average conditioning density, standard deviation, nonuniformity (NU), and conditioning density distribution are trained as targets. The result of training seems to predict the target data well, although the average conditioning density, standard deviation, and NU in the contact area of wafer and pad and all areas of the pad have some errors. In addition, in the case of NU, the prediction calculated from the training results of the average conditioning density and standard deviation can reduce the error of training compared with the results predicted through training. The results of training on the conditioning density profile generally follow the target data well, confirming that the shape of the conditioning density profile can be predicted.

Principles of Chemical Risk Assessment: The ATSDR Perspective

  • Johnson Barry L.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.405-411
    • /
    • 1994
  • Hazardous wastes released into the general environment are of concern to the public and to public health authorities. In response to this concern, the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (commonly called Superfund), was enacted in 1980 to provide a framework for environmental, public health, and legal actions concerning uncontrolled releases of hazardous substances. The Agency for Toxic Substances and Disease Registry (ATSDR) was created by Superfund to address the public health issues of hazardous wastes in the community environment. Two key Agency programs, Public Health Assessments and Toxicological Profiles, are designed to assess the risk to human health of exposures to hazardous substances that migrate from waste sites or through emergency releases (e.g., chemical spills). The Agency's public health assessment is a structured process that permits ATSDR to identify which waste sites or other point sources require traditional public health actions (e.g.. human exposure studies, health studies, registries, health surveillance, health advisories). The ATSDR qualitative public health assessment complements the U.S. Environmental Protection Agency's quantitative risk assessment. For Superfund purposes, both assessments are sitespecific. ATSDR's toxicological profiles are prepared for priority hazardous substances found most frequently at Superfund sites. Each profile presents the current toxicologic and human health effects information about the substance being profiled. Each profile also contains Minimal Risk Levels (MRLs), a type of risk assessment value. This paper covers ATSDR's experience in conducting public health assessments and developing MRLs, and it relates this experience to recommendations on how to improve chemical risk assessments.

  • PDF

충북 진천분지 북동부에 발달한 화강암 풍화층의 풍화 특색 (Weathering Characteristics of Granitic Hills Developed in Eastern Jincheon Basin, Korea)

  • 김영래
    • 한국지형학회지
    • /
    • 제27권3호
    • /
    • pp.1-11
    • /
    • 2020
  • A CIA analysis (A-CN-K and A-CNK-FM ternary diagram) indicates that, unlike the general granitic hills of the Korean Peninsula, the chemical weathering of the granitic grus (sandy regolith) in the eastern Jincheon basin is variable in geomorphic site except the Chuncheon basin. In the study area, there are three types of hills, such as; inner hills, linear isolated hills, and outer hills. The weathered mantles of the outer hills and linear isolated hills are weakly altered, whereas the inner hill, the Bonghyeon profile, shows a stronger chemical loss of the compositions approximating saprolite. There are small differences between the outer hills and linear isolated hills. The Geumwang site is considered fresh rock due to a low lever of alteration, although its sampling profile shows sandy weathering mantles. In the profiles of the Masan and Mugeuks sites, the lower part of weathering mantles has not experienced a significant level of component loss, but the upper regoliths have substantially been modified. The alteration of the hills occurs by chemical loss of CaO and Na2O. K2O exhibited little variation at all sampling suites and it has not changed into saprolite.

The Effects of Genetic Groups, Nutrition, Finishing Systems and Gender of Brazilian Cattle on Carcass Characteristics and Beef Composition and Appearance: A Review

  • Pizzi Rotta, Polyana;do Prado, Rodolpho Martin;do Prado, Ivanor Nunes;Valero, Maribel Velandia;Visentainer, Jesui Vergilio;Silva, Roberio Rodrigues
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권12호
    • /
    • pp.1718-1734
    • /
    • 2009
  • The aim of this review is to address some characteristics that influence meat quality. Genetic groups, nutrition, finishing systems and gender are the major factors that change carcass characteristics, chemical composition and fatty acid profile. Genetic groups that have zebu genes in their composition show higher hot carcass dressing than genetic groups without zebu genes. Genetic groups that have European breeds in their composition have higher marbling scores. On the other hand, genetic groups that have zebu breeds show low marbling scores. Bulls finished in feedlots present higher final weight than steers, cull cows and heifers. Fat thickness is one of the principal parameters that are affected by different gender. Cull cows (4.72 mm) and heifers (4.00 mm) present higher values than bulls (1.75 mm) and steers (2.81 mm). The major effects observed by different systems of termination are fat thickness and marbling. Crude protein presents variation due to nutrition. Nutrition influences variation of fatty acid profile. Genetic groups also influence fatty acid profile. Genetic groups that have zebu genes in their composition show high percentage of PUFA. The major class of fatty acids that is changed with nutrition is PUFA. The better ratios of PUFA/SFA and n-6/n-3 are found in Longissimus muscle of animals finished in pasture systems.

서울지역에서의 VOCs 오염원 기여도 추정에 관한 연구 (Estimation of Quantitative Source Contribution of VOCs in Seoul Area)

  • 봉춘근;윤중섭;황인조;김창녕;김동술
    • 한국대기환경학회지
    • /
    • 제19권4호
    • /
    • pp.387-396
    • /
    • 2003
  • A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Hussain, Sajjad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.221-234
    • /
    • 2021
  • During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

Long Fiber Thermoplastic(LFT) 사출성형 공정에서 캐비티 내 압력 측정 및 CAE해석을 활용한 점도 추정 (Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure)

  • 임승현;전강일;손영곤;김동학
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1982-1987
    • /
    • 2011
  • 본 연구에서는 미지시료 또는 LFT와 같은 고점도 수지의 점도를 실제 사출성형 공정과 CAE 해석을 통하여 신뢰할 수 있는 새로운 점도의 추정 방법을 제안하였다. 우선 금형 내에 캐비티 압력을 측정할 수 있는 시스템을 구성하였고, 이 시스템을 이용해서 실제 사출과정에서 나타나는 압력 변화를 측정하는 것이다. 상용화 된 CAE 프로그램(Moldflow)은 사출공정에서 캐비티 내부를 흐르는 수지의 압력변화를 모사할 수 있다. 만약, CAE D/B에 있는 수지의 점도 데이터가 정확하다고 가정하면, 실험에서 측정한 압력 프로파일과 CAE로부터 계산 된 압력 프로파일이 일치해야 한다. 이것이 실험값과 일치하지 않으면 가정한 값을 CAE D/B에 입력해서 일치할 때까지 반복함으로써 신뢰성 있는 점도를 추정 할 수 있다. 이러한 알고리즘의 타당성을 검증하기 위해서 PP수지에 대하여 적용한 결과, 일반적인 점도계로 측정한 값과 일치하는 결과를 얻었다. 한편, PP-LFT에 대하여 적용하여 최적화 된 점도 데이터도 추정할 수 있었다.

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

파괴분석을 이용한 단일이온교환된 유리의 응력 형성 관찰 (Determination of Stress Profiles by Fractography in Single Ion-exchanged Glass)

  • 이회관;강원호
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.61-64
    • /
    • 2003
  • 단일이온교환된 유리의 응력 특성을 관찰하기 위하여 파괴분석을 하였다. 프로세스변화로 인하여 이온교환된 유리의 응력층이 유리표면에서 안쪽으로 이동하였다. 깃털모양자국(hackle marker)과 거울면(mirror region)의 크기가 이온교환프로세스의 온도, 시간에 따라 변화하였으며, 파괴강도에 비례하였다. 또한 Indenter를 사용하여 응력층을 파괴하는 경우 일반유리와 같은 파괴특성을 나타냈다.

  • PDF

극저온 자화 유도 결합 플라즈마를 이용한 Platinum 식각에 관한 연구 (A study on platinum dry etching using a cryogenic magnetized inductively coupled plasma)

  • 김진성;김정훈;김윤택;황기웅;주정훈;김진웅
    • 한국진공학회지
    • /
    • 제8권4A호
    • /
    • pp.476-481
    • /
    • 1999
  • Characteristics of platinum dry etching were investigated in a cryogenic magnetized inductively coupled plasma (MICP). The problem with platinum etching is the redeposition of sputtered platinum on the sidewall. Because of the redeposits on the sidewall, the etching of patterned platinum structure produces feature sizes that exceed the original dimension of the PR size and the etch profile has needle-like shape [1]. The main object of this study was to investigate a new process technology for fence-free Pt etching As bias voltage increased, the height of fence was reduced. In cryogenic etching, the height of fence was reduced to 20% at-$190^{\circ}C$ compared with that of room temperature, however the etch profile was not still fence-free. In Ar/$SF_6$ Plasma, fence-free Pt etching was possible. As the ratio of $SF_6$ gas flow is more than 14% of total gas flow, the etch profile had no fence. Chemical reaction seemed to take place in the etch process.

  • PDF