Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.3.221

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model  

Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Hussain, Sajjad (Department of mathematics, Govt Post graduate college)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.10, no.3, 2021 , pp. 221-234 More about this Journal
Abstract
During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.
Keywords
Powell-Eyring nanofluid; MHD flow; Cattaneo-Christov heat flux; heat generation/absorption; chemical reaction; bioconvection; HAM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hsiao, K.L. (2016), "Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet", Appl. Therm. Eng., 98, 850-861. https://doi.org/10.1016/j.applthermaleng.2015.12.138.   DOI
2 Hsiao, K.L. (2017), "Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature", Int. J. Heat Mass Transf., 112, 983-990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042.   DOI
3 Huaxu, L., Fuqiang, W., Dong, Z., Ziming, C., Chuanxin, Z., Bo, L. and Huijin, X. (2020), "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system", Energy, 194, 116913. https://doi.org/10.1016/j.energy.2020.116913.   DOI
4 Ibrahim, W. and Hindebu, B. (2019), "Magnetohydrodynamic (MHD) boundary layer flow of eyring-powell nanofluid past stretching cylinder with cattaneo-christov heat flux model", Nonlin. Eng., 8(1), 303-317. https://doi.org/10.1515/nleng-2017-0167.   DOI
5 Javed, T., Ali, N., Abbas, Z. and Sajid, M. (2013), "Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet", Chem. Eng. Commun., 200(3), 327-336. https://doi.org/10.1080/00986445.2012.703151.   DOI
6 Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.   DOI
7 Khan, M.I., Kumar, A., Hayat, T., Waqas, M. and Singh, R. (2019), "Entropy generation in flow of Carreau nanofluid", J. Mol. Liq., 278, 677-687. https://doi.org/10.1016/j.molliq.2018.12.109.   DOI
8 Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Sci. Rep., 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2.   DOI
9 Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Therm. Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.   DOI
10 Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Transf., 37(10), 421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015.   DOI
11 Liao, S. (2014). Advances in the Homotopy Analysis Method, World Scientific, Singapore.
12 Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Transf., 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.   DOI
13 Malik, M.Y., Hussain, A. and Nadeem, S. (2013), "Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity", Scientia Iranica, 20(2), 313-321. https://doi.org/10.1016/j.scient.2013.02.028.   DOI
14 Mishra, S.R., Khan, I., Al-Mdallal, Q.M. and Asifa, T. (2018), "Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source", Case Stud Therm Eng, 11, 113-119.   DOI
15 Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosity and its implications for thermal applications", Appl. Phys. Lett., 89(13), 133108. https://doi.org/10.1063/1.2356113.   DOI
16 Mittal, A.S. (2019), "Analysis of water-based composite MHD fluid flow using HAM", Int. J. Ambient Energy, 2019, 1-13. https://doi.org/10.1080/01430750.2019.1611648.   DOI
17 Mustafa, T. (2016), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluids, 28(4), 043102. https://doi.org/10.1063/1.4945650.   DOI
18 Nadeem, S., Abbas, N. and Malik, M.Y. (2020), "Inspection of hybrid based nanofluid flow over a curved surface", Comput. Methods Programs Biomed., 189, 105193. https://doi.org/10.1016/j.cmpb.2019.105193.   DOI
19 Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M. and Waqas, M. (2020), "Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy", Comput. Methods Programs Biomed., 190, 105362. https://doi.org/10.1016/j.cmpb.2020.105362.   DOI
20 Abdul Latiff, N.A., Uddin, M.J., Beg, O.A. and Ismail, A.I. (2016), "Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet", Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst., 230(4), 177-187. https://doi.org/10.1177/1740349915613817.   DOI
21 Ragupathi, P., Hakeem, A.A., Al-Mdallal, Q.M., Ganga, B. and Saranya, S. (2019), "Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate", Case Stud. Therm. Eng., 15, 100521. https://doi.org/10.1016/j.csite.2019.100521,   DOI
22 Reddy, B.S.K., Krishna, M.V., Rao, K.S.N. and Vijaya, R.B. (2018), "RETRACTED: HAM Solutions on MHD flow of nano-fluid through saturated porous medium with hall effects", Mater. Today, 5(1), 120-131. https://doi.org/10.1016/j.matpr.2017.11.062.   DOI
23 Rehman, K.U., Al-Mdallal, Q.M. and Malik, M.Y. (2019), "Symmetry analysis on thermally magnetized fluid flow regime with heat source/sink", Case Stud. Therm. Eng., 14, 100452. https://doi.org/10.1016/j.csite.2019.100452.   DOI
24 Akbar, N.S., Ebaid, A. and Khan, Z.H. (2015), "Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet", J. Magn. Magn. Mater., 382, 355-358. https://doi.org/10.1016/j.jmmm.2015.01.088.   DOI
25 Ahmad Khan, J., Mustafa, M., Hayat, T. and Alsaedi, A. (2015), "Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface", PLOS One, 10(9), e0137363. https://doi.org/10.1371/journal.pone.0137363.   DOI
26 Ahmed, S.E. and Mahdy, A. (2016), "Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media", Appl. Math. Mech., 37(4), 471-484. https://doi.org/10.1007/s10483-016-2044-9.   DOI
27 Ahmed, Z., Nadeem, S., Saleem, S. and Ellahi, R. (2019), "Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface", Int. J. Num. Methods Heat Fluidflow, 29(12), 4607-4623. https://doi.org/10.1108/HFF-04-2019-0346.   DOI
28 Al-Mdallal, Q., Aman, S., Al Fahel, S., Dadoa, S. and Kreishan, T. (2019), "Numerical study of unsteady flow of a fluid over shrinking long cylinder in a porous medium undermagnetic force", J. Nanofluids, 8(7), 1609-1615. https://doi.org/10.1166/jon.2019.1712.   DOI
29 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling". Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.   DOI
30 Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/HeatTransRes.2019025622.   DOI
31 Saranya, S. and Al-Mdallal, Q.M. (2020), "Non-Newtonian ferrofluid flow over an unsteady contracting cylinder under the influence of aligned magnetic field", Case Stud. Therm. Eng., 21, 100679. https://doi.org/10.1016/j.csite.2020.100679.   DOI
32 Begum, N., Siddiqa, S. and Hossain, M.A. (2017), "Nanofluid bioconvection with variable thermophysical properties", J. Mol. Liq., 231, 325-332. https://doi.org/10.1016/j.molliq.2017.02.016.   DOI
33 Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transf., 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006.   DOI
34 Alwatban, A.M., Khan, S.U., Waqas, H. and Tlili, I. (2019), "Interaction of Wu's slip features in bioconvection of Eyring Powell nanoparticles with activation energy", Processes, 7(11), 859. https://doi.org/10.3390/pr7110859.   DOI
35 Aziz, A., Alsaedi, A., Muhammad, T. and Hayat, T. (2018), "Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk", Results Phys., 8, 785-792. https://doi.org/10.1016/j.rinp.2018.01.009.   DOI
36 Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.   DOI
37 Besthapu, P., Haq, R.U., Bandari, S. and Al-Mdallal, Q.M. (2019), "Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface", Neural Comput. Appl., 31(1), 207-217. https://doi.org/10.1016/j.physe.2014.07.013.   DOI
38 Cattaneo, C. (1948), "Sulla conduzione del calore", Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101.
39 Shehzad, S.A. (2018), "Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species", Revista Mexicana Fisica, 64(6), 628-633. http://dx.doi.org/10.31349/revmexfis.64.628.   DOI
40 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.   DOI
41 Soomro, F.A., Haq, R.U., Al-Mdallal, Q.M. and Zhang, Q. (2018), "Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface", Results Phys., 8, 404-414. https://doi.org/10.1016/j.rinp.2017.12.037.   DOI
42 Straughan, B. (2008), Stability and Wave Motion in Porous Media, Springer Science & Business Media, Durham, UK.
43 Straughan, B. (2010), "Thermal convection with the Cattaneo-Christov model", Int. J. Heat Mass Transf., 53(1-3), 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001.   DOI
44 Subhani, M. and Nadeem, S. (2019), "Numerical analysis of micropolar hybrid nanofluid", Appl. Nanosci., 9(4), 447-459. https://doi.org/10.1007/s13204-018-0926-2.   DOI
45 Doh, D.H., Muthtamilselvan, M., Swathene, B. and Ramya, E. (2020), "Homogeneous and heterogeneous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM", Math. Comput. Simul., 168, 90-110. https://doi.org/10.1016/j.matcom.2019.08.005.   DOI
46 Tlili, I., Ramzan, M., Kadry, S., Kim, H.W. and Nam, Y. (2020), "Radiative MHD nanofluid flow over a moving thin needle with Entropy generation in a porous medium with dust particles and Hall current", Entropy, 22(3), 354. https://doi.org/10.3390/e22030354.   DOI
47 Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533.   DOI
48 Chaudhary, M.A. and Merkin, J.H. (1995), "A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow I Equal diffusivities", Fluid Dyn. Res., 16(6), 311. https://doi.org/10.1016/0169-5983(95)00015-6.   DOI
49 Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29)", Argonne National Lab., Illinois, USA.
50 Christov, C.I. (2009), "On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction", Mech. Res. Commun., 36(4), 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003.   DOI
51 Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.   DOI
52 Elnajjar, E.J., Al-Mdallal, Q.M. and Allan, F.M. (2016), "Unsteady flow and heat transfer characteristics of fluid flow over a shrinking permeable infinite long cylinder", J. Heat Transf., 138(9), 091008. https://doi.org/10.1115/1.4033058.   DOI
53 Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.   DOI
54 Han, S., Zheng, L., Li, C. and Zhang, X. (2014), "Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model", Appl. Math. Lett., 38, 87-93. https://doi.org/10.1016/j.aml.2014.07.013.   DOI
55 Turkyilmazoglu, M. (2016a), "Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method", Mediterranean J. Math., 13(6), 4019-4037. https://doi.org/10.1007/s00009-016-0730-8.   DOI
56 Turkyilmazoglu, M. (2016b), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluids, 28(4), 043102. https://doi.org/10.1063/1.4945650.   DOI
57 Umar, M., Akhtar, R., Sabir, Z., Wahab, H.A., Zhiyu, Z., Imran, A., Shoaib, M. and Raja, M.A.Z. (2019), "Numerical treatment for the three-dimensional Eyring-Powell fluid flow over a stretching sheet with velocity slip and activation energy", Adv. Math. Phys., 2019, 9860471. https://doi.org/10.1155/2019/9860471.   DOI
58 Freidoonimehr, N., Rashidi, M.M. and Mahmud, S. (2015), "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid", Int. J. Therm. Sci., 87, 136-145. https://doi.org/10.1016/j.ijthermalsci.2014.08.009.   DOI
59 Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. and Ganji, D.D. (2017), "Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow", Powder Technol., 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006.   DOI
60 Hayat, T., Anwar, M.S., Farooq, M. and Alsaedi, A. (2014), "MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer", Int. J. Nonlinear Sci. Num. Simul., 15(6), 365-376. https://doi.org/10.1515/ijnsns-2013-0104.   DOI
61 Hayat, T., Saeed, Y., Alsaedi, A. and Asad, S. (2015), "Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past an exponentially stretching sheet", PLoS One, 10(9), e0133831. https://doi.org/10.1371/journal.pone.0133831.   DOI
62 Hayat, T., Gull, N., Farooq, M. and Ahmad, B. (2016), "Thermal radiation effect in MHD flow of Powell-Eyring nanofluid induced by a stretching cylinder", J. Aerosp. Eng., 29(1), 04015011. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000501.   DOI
63 Hsiao, K.L. (2014), "Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation", Comput. Fluids, 104, 1-8. https://doi.org/10.1016/j.compfluid.2014.08.001.   DOI
64 Zubair, M., Ijaz, M., Abbas, T. and Riaz, A. (2019), "Analysis of modified Fourier law in flow of ferromagnetic Powell-Eyring fluid considering two equal magnetic dipoles", Can. J. Phys., 97(7), 772-776. https://doi.org/10.1139/cjp-2018-0586.   DOI
65 Zangooee, M.R., Hosseinzadeh, K. and Ganji, D.D. (2019), "Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM", Case Stud. Therm. Eng., 14, 100460. https://doi.org/10.1016/j.csite.2019.100460.   DOI
66 Zhao, G., Wang, Z. and Jian, Y. (2019), "Heat transfer of the MHD nanofluid in porous microtubes under the electrokinetic effects", Int. J. Heat Mass Transf., 130, 821-830. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.007.   DOI