• Title/Summary/Keyword: chemical pretreatment

Search Result 603, Processing Time 0.032 seconds

Ultrasonic Pretreatment for Thermophilic Aerobic Digestion in Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Kwak, Myung-Shin;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.469-474
    • /
    • 2000
  • In order to enhance the degradation efficiency of waste activated sludge (WAS) by thermophilic aerobic digestion, an ultrasonic pretreatment was examined. It was observed that ultrasonic pretreatment increased the solubilization of organic matter in the WAS and that the solubilization ratio of the organics increased during the first 30 min but did not extensively increase thereafter. Therefore, a pretreatment time of 30 min was determined to be the economical pretreatment time from the experimental results. From the digestion experiments, which was conducted using the WAS collected from an oil refinery plant in Inchon, Korea, investigating the effects of an ultrasonic pretreatment on thermophilic aerobic digestion, it was confirmed that the proposed ultrasonic pretreatment was effective at enhancing the release of the cellular components in WAS and the degradation of released components in the thermophilic aerobic digestion.

  • PDF

Optimization of Bio-based Succinic Acid Production from Hardwood Using the Two Stage pretreatments

  • Jung, Ji Young;Jo, Jong Soo;Kim, Young Wun;Yoon, Byeng Tae;Kim, Choon Gil;Yang, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • The steam explosion-chemical pretreatment is a more effective wood pretreatment technique than the conventional physical pretreatment by accelerating reactions during the pretreatment process. In this paper, two-stage pretreatment processes of hardwood were investigated for its enzymatic hydrolysis and the succinic acid yield from the pretreated solid. The first stage pretreatment was performed under conditions of low severity to optimize the amount of solid recovery. In the second stage pretreatment washed solid material from the first stage pretreatment step was impregnated again with chemical (alkaline or chlorine-based chemicals) to remove a portion of the lignin, and to make the cellulose more accessible to enzymatic attack. The effects of pretreatment were assessed by enzymatic hydrolysis and fermentation, after the two stage pretreatments. Maximum succinic acid yield (16.1 g $L^{-1}$ and 77.5%) was obtained when the two stage pretreatments were performed at steam explosion -3% KOH.

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

Physico-Chemical Pretreatment of Herbaceous Biomass by Organosolv Flow-Through Process (초본계 바이오매스의 물리-화학적 유기용매 전처리 공정)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.441-446
    • /
    • 2018
  • Herbaceous biomass is easier at chemical conversion than woody biomass. However, pretreatment must be needed because it has substantially lignin. Organsolv is good at fractionation of enzymatic hydrolysis inhibitors such as lignin and it is reusable by distillation when it has low molecular weight. Flow-through process can prevent recondensation of fractionated components and easily separate liquid from the biomass. In this study, the pretreatment was performed for decreasing additional process by using ethanol without catalyst because this process has a lot of operation expense at bio-alcohol production process. Flow-through pretreatment was performed at $150{\sim}190^{\circ}C$ with 30~99.5 wt% ethanol during 20~60 minutes. Also the phsyco-chemical pretreatment was performed for decreasing reaction time and temperature.

The Effect of Enzymatic Hydrolysis by Ethanol Organosolv Pretreatment of Corn Stover (에탄올 유기용매 전처리를 이용한 옥수수대의 효소당화)

  • Park, Jang Han;Kim, Tae Huyn;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2016
  • This study is for the effective pretreatment and saccharification of lignocellulosic biomass for a transport fuel receiving attention. The waste water during the pretreatment of biomass is major factor for determining the price of biofuel. Therefore, we conducted high concentration of organosolv pretreatment for decline waste water and reusing the solvent. We confirmed effect of organosolv pretreatment by components analysis and enzymatic hydrolysis of pretreated biomass. The corn stover was used for and 99.5 wt% of ethanol as a organosolv pretreatment. The pretreatment condition was varied 130 to $190^{\circ}C$ during the designated reaction times and the effect of pretreatment was investigated by enzymatic hydrolysis. The highest glucose conversion was more than 68% the pretreatment condition of $190^{\circ}C$ for 70 min or more. The solid remaining was more than 70% and almost of cellulose and hemicellulose were survived.

Development of Cellulosic Woven Fabric for Digital Textile Printing (전처리약제에 따른 셀룰로오스 디지털텍스타일 프린팅소재의 개발에 관한 연구)

  • Son Eun Jong;Lee Young Mok;Jang Se Chan;Yi Sung Chul
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.20-26
    • /
    • 2005
  • For developing digital printing textiles, special pretreatment processes are necessary. These processes include developing formulation of coating agent and coating processes. The pretreatment were investigated with the variation concentration of anti-migration agent, fixation chemical etc.. The printing qualities according to pretreatment conditions were studied with color yield, printed capital letter sharpness and washing fastness. It was observed that the concentration of anti-migration agent, fixation agent(alkali) was closely related to printing qualities. For developing industrial technology of cellulosic digital printing textiles, optimum viscosity of pretreatment coating formulation is very important factor.

Efficient Extraction of Bioethanol from Freshwater Cyanobacteria Using Supercritical Fluid Pretreatment

  • Pyo, Dongjin;Kim, Taemin;Yoo, Jisun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.379-383
    • /
    • 2013
  • For the production of ethanol from freshwater cyanobacteria, a new pretreatment method using supercritical fluid was introduced. In this study, it was found that the supercritical fluid could penetrate inside the cell wall and help to liberate starch from cyanobacterial cells which resulted in the increase of the efficiency of ethanol production. For Microcystis aeruginosa, supercritical fluid pretreatment increased the amount of ethanol produced from cyanobacteria from 1.53 g/L to 2.66 g/L. For Anabaena variabilis, the amount of ethanol was increased from 1.25 g/L to 2.28 g/L. With use of supercritical fluid pretreatment, the efficiency of the process to obtain higher ethanol yields from freshwater cyanobacteria was improved upto 80%. The optimum temperature and pressure conditions for supercritical fluid pretreatment were determined as the temperature of $40^{\circ}C$ and the pressure of 120 atm. This study demonstrates the feasibility of using supercritical fluid pretreatment for ethanol production using freshwater cyanobacteria.

Optimization of Lipase Pretreatment Prior to Lipase Immobilization to Prevent Loss of Activity

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kim, Seung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.650-654
    • /
    • 2007
  • In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be $40^{\circ}C$, 200rpm, and 45min, respectively. The activity of immobilized soybean oil pretreated lipase was 630U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw (암모니아수 침지 전처리 공정을 이용한 볏짚의 저온 동시당화발효)

  • Jang, Suh Yoon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • Physical and chemical barriers, caused by the close association of the main components of cellulosic biomass, hinder the hydrolysis of cellulose to fermentable sugars. Since the main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose, development of an effective pretreatment process has been considered to be important. In this study, SAA (Soaking in Aqueous Ammonia) was chosen as pretreatment because this is the simple and low-cost method. Rice straw of which the production is outstandingly high in domestic agriculture residues in Korea was chosen as raw material. SSA pretreatment with various reaction time of 3 h to 72 h was tested. The enzymatic hydrolysis and SSF (Simultaneous Saccharification and Fermentation) were performed at three different temperature (30, 40 and $50^{\circ}C$) to investigate performance of SSF upon various pretreatment conditions. As a result, this SAA treated-rice straw was found to have great potential for effective enzymatic hydrolysis and SSF with lower enzyme dosage at lower temperature ($30^{\circ}C$) than its conventional SSF. In SAA addition, SAA reduced fermentation time to 24 h owing to increase the initial hydrolysis rate substantially.