• Title/Summary/Keyword: chemical preservatives

Search Result 82, Processing Time 0.036 seconds

PREPARATION OF MULTIFUNCTIONAL LOW MOLECULAR WEIGHT CHITOSAN AND ITS APPLICATION IN COSMETICS.

  • Ryu, Chang-Suk;Kim, Hyung-Bae;Kim, Jeong-Ha;Jo, Byoung-Kee;Suh, Sang-Bong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.89-95
    • /
    • 1998
  • The aim of this study is to elucidate the anti-microbial activity and anti-oxidative activity of water-soluble chitosan with a molecular weight of 5,000-200,000. Water-soluble chitosans have demonstrated a regular anti-microbial activity on the tested strians by the paper disk method. In the MIC (Minimum Inhibitory Concentration) test, CC-01 (MW=5,000) with the lower MW showed the higher MIC value than the higher MW chitosan. The MW of chitosan increase, the MIC decreases. MICs of 4 chitosans(CC-02∼CC-05) against S. aureusTCC 65389, E coli ATCC 8739, p. aeruginosa, ATCC 9027 and C. albicans ,ATCC 10231 were 7.0-39.O$\mu\textrm{m}$, whereas MICs of chitosans against A. niger were over 2.OmM. Formula containing chitosan showed higher anti-microbial activities than the formula made with the chemical preservatives(Methylparaben 0.2% and Imidazolidinyl Urea 0.3%). Among 5 water-soluble chitosans, CC-03(MW=92,163) showed the most potent anti-oxidative activity (IC$\sub$50/ : 0.2mM). In conclusion, the water-soluble low molecular weight chitosan could be served as natural preservatives and antioxidant in cosmetics.

  • PDF

Antifungal Activity of Five Plant Essential Oils as Fumigant Against Postharvest and Soilborne Plant Pathogenic Fungi

  • Lee, Sun-Og;Choi, Gyung-Ja;Jang, Kyoung-Soo;Lim, He-Kyoung;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • A total of 39 essential oils were tested for antifungal activities as volatile compounds against five phytopathogenic fungi at a dose of 1 ${\mu}l$ per plate. Five essential oils showed inhibitory activities against mycelial growth of at least one phytopathogenic fungus. Origanum vulgare essential oil inhibited mycelial growth of all of the five fungi tested. Both Cuminum cyminum and Eucalyptus citriodora oils displayed in vitro antifungal activities against four phytopathogenic fungi except for Colletotrichum gloeosporioides. The essential oil of Thymus vulgaris suppressed the mycelial growth of C. gloeosporioides, Fusarium oxysporum and Rhizoctonia solani and that of Cymbopogon citratus was active to only F. oxysporum. The chemical compositions of the five active essential oils were determined by gas chromatography-mass spectrometry. This study suggests that both E. citriodora and C. cyminum oils have a potential as antifungal preservatives for the control of storage diseases of various crops.

Studies on the Antimicrobial Effect of Extracts of Propolis (프로폴리스 추출물의 항균 활성에 대한 연구)

  • Son, Young-Rok
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.189-194
    • /
    • 2003
  • Approved chemical preservatives have been widely used to preserve foods and increase their shelf life. There are increasing demends of the partial or complete removal of chemical preservatives from foods vecause of adverse health effect of chemicals. In this study, the possibility of natural antimicrobial compounds, Korean propolis as food preservatives are investigated. Propolis samples were extracted on various concentration of ethanol. Propolis extracts extracted with 100% ethanol showed the highest inhibitory effect aginst food spoilage microorganisms. The 100% ethanol extracts of propolis were selected and the antimicrobial activites of 100% ethanol extracts of proplis against several food spoilage microorganisms were examined. Bacillus subtilis, Micrococcus luteus, Escherichia coli, Staphylcoccus aureus, Bacillus cereus, Shigella sonnei, Salmonella choleraesuis, Erwinia rhapontici, and Vibrio parahaemolyticus as food poisoning microorganisms were chosen for the examination. The Propolis extracts had antimicrobial activity against food spoilage microorganisms. When the microorganisms were treated with propolis extracts, the population of food spolige microorganisms were decreased by 1~9 log.

Effect of MeOH/IPA Ratio on Coating and Fluxing of Organic Solderability Preservatives (유기 솔더 보존제의 코팅 및 플럭싱에 대한 메탄올/이소프로필알콜 비율의 영향)

  • Lee, Jae-Won;Kim, Chang Hyeon;Lee, Hyo Soo;Huh, Kang Moo;Lee, Chang Soo;Choi, Ho Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.402-407
    • /
    • 2008
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservative (OSP) in order to improve the stability and the reliability of final product. Since current organic solder preservatives have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to investigate the effect of MeOH/IPA (Isopropyl alcohol) ratio on the fluxing of a new OSP, developed in previous research, andto find out an optimum formulation of flux components for the application of the OSP in current packaging process. As a result of this study, it was revealed that higher MeOH/IPA ratio in flux showed better performance of fluxing a new OSP.

Synthesis and Evaluation of Thermo-stable Organic Solderability Preservatives Based Upon Poly(vinyl pyridine-co-methylmethacrylate) (폴리(비닐피리딘-co-메틸메타아크릴레이트) 기반 열안정성 유기솔더보존제의 합성 및 평가)

  • Bui, Tien Van;Choi, Ho-Suk;Seo, Chung-Hee;Jang, Young-Sic;Heo, Ik-Sang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservatives (OSP) in order to improve the stability and the reliability of final product. Since current OSPs have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to develop various thermo-stable OSPs based upon poly(vinyl pyridine-co- methylmethacrylate) and to evaluate their anti-oxidation property protecting Cu pad, thermo-stability and solubility to acid- or alcohol-containing aqueous solution during pos-fluxing. All OSPs showed not only good anti-oxidation property, thermo-stability and solubility but also more advantages like low cost, less odor, and less hygroscopic.

Preparation and Evaluation of Poly(vinyl pyridine) Copolymers for Organic Solderability Preservatives (유기솔더 보존제용 폴리(비닐 피리딘) 공중합체의 합성 및 특성평가)

  • Im, Jeong-Hyuk;Lee, Hyun-Jun;Huh, Kang-Moo;Kim, Chang-Hyeon;Lee, Hyo-Soo;Lee, Chang-Soo;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.519-524
    • /
    • 2006
  • Poly(4-vinyl pyridine) (PVP) and its copolymers, poly(4-vinyl pvridine- co-acrylamide) and poly(4-vinyl pyridine-co-allylamine), were synthesized and evaluated for application to organic solder-ability preservatives (OSP). The copolymers were synthesized by radical polymerization of vinyl pyridine in the presence of acrylamide or allylamine as a comonomer. Various kinds of polymers with different chemical composition were synthesized by varying the feed ratio of monomers and their low $M_w$ polymers can be obtained by adding 2-mercaptoethanol as a chain transfer agent during poly-merization. All the polymers showed good adhesion properties on Cu pad when they were spin-coated. Especially, allylamine -containing copolymers showed both good adhesion and solubility properties. Also, they exhibited better thermal stability than PVP homopolymer and such thermal properties were changed depending on the chemical composition and their $M_w$, which were evidenced by the measurement of oxygen induced temperature (OIT). From the OIT measurement, poly(4-vinyl pyridine- co-allylamine) was thermally stable up to $230^{\circ}C$ for 70 min in the 100% oxygen environment. As a result, allylamine-containing copolymers can be considered as a promising OSP coating material that has excellent thermal and adhesive properties applicable to the present microelectronic package processes.

Studies on synergistic actions of some chemicals on radiation sterilization of Lactobacillus and yeast. "Synergistic actions of D.H.A., Sorbic acid and Menadion." (유산균 및 효모균에 대한 화학물질의 방사선살균협력작용에 관한 연구 "D.H.A., Sorbic acid, 및 Menadion 의 협력작용에 대하여")

  • 김종협;김세열
    • Korean Journal of Microbiology
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 1967
  • The synergistic actions of certain antimetabolic agents for Saccharomyces cerevisiae and Lactobacillus plantarum on radiation sterilization have been studied. The used chemical agents are sorbic acid, vitamin-$K_3$, dehydroacetic acid, p-oxybutyl benzoate and nitrofurazone, those are the permitted as food preservatives. Experimental results are as following, 1) Survival fraction of yeast which was gamma-irradiated and influenced by sorbic acid or vitamin $K_3$ is much reduced than that of only irradiated respectively. 2) It seems like that the used chemicals acts synergistically on radiation sterilization. Sodium-dehydroacetate and p-oxybutyl benzoate are proved to be also synergistic but weakly. 3) Survival fraction of Lact. plantarum which was gamma-irradiated and influenced by sorbic acid, dehydroacetic acid or nitrofurazone respectively much reduced than that of only irradiated group, it can be estimated as synergistic action of chemical affected on radiation sterilization. 4) It was found that nutrient componets can affect radiation sterilization of microorganisms protectively.

  • PDF

Endocrine Disrupting Activities of Parabens: An Overview of Current Databases on Their Estrogenicity

  • Dang, Vu Hoang;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.229-237
    • /
    • 2008
  • Recently, parabens have been believed to act as xenoestrogens, an identified class of endocrine disruptors (EDs). These environmental compounds are the most well-known as preservatives in many commercial products, including food, cosmetics and pharmaceutical industries. It has been demonstrated that the human health risks of parabens result from a long-term exposure to skin in which this chemical group is rapidly absorbed through the skin. On the other hand, parabens are also completely absorbed from gastrointestinal tract. It has reported that these substances possess several biological effects in which inhibitory property involved in membrane transports and mitochondrial functions is considered to be important for their action. Testing of parabens has revealed that estrogen-like activities of these chemicals are much less potent than natural estrogen, $17{\beta}$ estradiol (E2). Additionally, the estrogenicity of individual paraben- compounds is distinct depending upon their biochemical structure. Recent findings of paraben-estrogenic activities have shown that these compounds may affect breast cancer incidence in women, suggesting adverse ecological outcomes of this environmental group on human and animal health. Although the biological and toxicological effects of parabens have been demonstrated in many previous studies, possible mechanism(s) of their action are required to be explored in order to bring the better understanding in the detrimental impacts of parabens in human and wildlife. There have several different types of parabens which are the most widely used as preservatives. These include methyl-paraben, ethylparaben, propylparaben, butylparaben and p-hydroxybenzoic acid, a major metabolite of parabens. In this review, we summarize current database based on in vitro and in vivo assays for estrogenic activities and health risk assessment of paraben- EDs which have been published previously.

Antimicrobial Characteristics Against Spoilage Microorganisms and Food Preservative Effect of Cinnamon (Cinnamomum cassia Blume) Bark Extract (계피추출물의 부패미생물에 대한 항균특성과 식품보존효과)

  • 정은탁;박미연;이은우;박욱연;장동석
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.648-653
    • /
    • 1998
  • The development of natural food preservatives instead of chemical synthetic food preservatives is world wide inte-rest. Authors already investigated that cinnamon bark extract revealed antimicrobial activity against general spoilage microorganisms of food especially its acitivity was stronger against molds than against bacteria. In this paper, authors examined the mirobial flora from the spoiled fish meat paste products and also checked the possibility of cinnamon bark extract food preservative for prolong the shelf life of the fish paste product and breads. The predominat bacteria was Bacillus sp. as about 98% of the total microorganisms isolated from unpacked or packed spoiled fish meat paste products. While molds and yeast are not detected from the vacuum packed products. The MIC(minimum inhibitory concentration) of cinnamon bark extract against the isolated spoilage bacteria and molds was 160~640$\mu\textrm{g}$/$m\ell$ and 40~80$\mu\textrm{g}$/$m\ell$, respectively. When the diluted cinnamon bark extract (the extract : ethanol=1 : 3) was sprayed on the surface of fried fish meat paste product, molds growth was delayed by 2 days at room temperature. The shelf lifes of sandwich and glutinousrice bread which surface sprayed with the diluted extract(1 : 1) was extended by 5 and 7 days, respectively.

  • PDF

Effect of Calcium-Sources and Preservatives on the Changes of Vitamins during Kimchi Fermentation (칼슘급원 및 보존료 첨가가 김치 발효중 비타민 함량변화에 미치는 영향)

  • 이혜준
    • Journal of the Korean Home Economics Association
    • /
    • v.26 no.1
    • /
    • pp.51-59
    • /
    • 1988
  • In the present study, an attempt was made to observe the effect of calcium-sources and preservatives on Kimchi fermentation. After pre-fermentation at room temperature for 16 hours, each Kimchi was stored at 4$^{\circ}C$. Changes of vitamin contents(vitamin C, thiamin, riboflavin and $\beta$-carotene) during the fermentation of Kimchi were determined. It was also attempt to relate the fermentation of Kimchi with the changes in chemical and organoleptic characteristics, such as pH, total acidity and reducing sugar. The findings were summarized as follows; 1. During Kimchi fermentation, the pH decreased steady and total acidity increased slowly in the follow order: K-Sorbate+acetic acid, k-Sorbate, Ca-Lactate and Control. the lower of pH and the higher of total acidity, the less of reducing sugar was remained. 2. changes of total vitamin C and reduced ascorbic acid contents during the Kimchi fermentation did not differ significantly from each other. At the begining of fermentation, Kimchi samples contained 20~25mg/100g of total vitamin C and 5~14 mg/100g of reduced ascorbic acid. In the final stage, however, 15~19 mg/100g of total vitamin C and 1~3 mg/100g of reduced ascorbic acid were remained. 3. The contents of thiam in and riboflavin were 30 to 42 meg/100g and 50 to 67 meg/100g at the initial stage, respectively. They increased with the degree of maturity (approximately 2 times of the content of the initial stage) and then gradually decreased. The content of $\beta$-carotene was found to be decreased with the degree of maturity. 4. The results of sensory evaluation indicated that Kimchi added with Ca-Carbonate, Ca-Carbonate+acetic acid and Ca-lactate were better than Control.

  • PDF