• Title/Summary/Keyword: chemical poisoning

Search Result 136, Processing Time 0.021 seconds

Regeneration of Used Commercial Catalyst for deNOx Emitted from Stationary Sources (배연 탈질용 폐촉매의 재생에 관한 연구)

  • Moon, Il-Shik;Cho, Gyoujin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.263-267
    • /
    • 1999
  • NO removal activity (per unit of mass) of the used catalyst was seriously decreased as low as 27% of the new catalyst. Since the surface area of the used catalyst was 63% of that of the new one, the mojor reason for the lessened activity of the used catalyst compared to the new one may be due to the decreased surface area by sintering and surface concentration of active materials. Poison may be regarded as another important factor, since it affect the active site of catalyst by heavy metals. To recycle the used catalyst, we focused on the removal of poisoning agents from the catalyst. By using $80^{\circ}C$ water for 30 min upto 2 h, the recycled catalyst demonstrated the best activity and efficiency, which may be due to the removal of both K and Na. Although the recovered activity (per unit of surface area) of the catalyst was 79% compared to the new one, the activity (per unit of mass) of the recovered catalyst was only 49% compared of the activity of fresh catalyst.

  • PDF

Different Clinical Courses for Poisoning with WHO Hazard Class Ia Organophosphates EPN, Phosphamidon, and Terbufos in Humans (WHO 분류 1 등급 EPN, Phosphamidone, Terbufos 유기인계 중독환자의 임상 양상)

  • Mun, Jong Gu;Moon, Jeong Mi;Lee, Mi Jin;Chun, Byeong Jo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: Extremely hazardous pesticides are classified as World Health Organization (WHO) hazard class Ia. However, data describing the clinical course of WHO class Ia OP (organophosphate) poisonings in humans are very scarce. Here, we compare the clinical features of patients who ingested hazard class Ia OPs. Methods: This retrospective observational case study included 75 patients with a history of ingesting ethyl p-nitrophenol thio-benzene phosphonate (EPN), phosphamidon, or terbufos. The patients were divided according to the chemical formulation of the ingested OP. Data regarding mortality and the development of complications were collected and compared among groups. Results: There were no differences in the baseline characteristics and severity scores at presentation between the three groups. No fatalities were observed in the terbufos group. The fatality rates in the EPN and phosphamidon groups were 11.8% and 28.6%, respectively. Patients poisoned with EPN developed respiratory failure later than those poisoned with phosphamidon and also tended to require longer mechanical ventilatory support than phosphamidon patients. The main cause of death was pneumonia in the EPN group and hypotensive shock in the phosphamidon group. Death occurred later in the EPN group than in the phosphamidon group. Conclusion: Even though all three drugs are classified as WHO class Ia OPs (extremely hazardous pesticides), their clinical courses and the related causes of death in humans varied. Their treatment protocols and predicted outcomes should therefore also be different based on the chemical formulation of the OP.

Preparation of High Purity Ammonium Dinitramide and Its Liquid Mono-propellant (암모늄 디나이트라마이드염의 합성 및 액상연료화 연구)

  • Kim, Wooram;Park, Mijeong;Kim, Sohee;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.591-596
    • /
    • 2019
  • A recently developed propellant, ammonium dinitramide (ADN, $NH_4N(NO_2)_2$ is stable and safe at an ambient condition. However, it requires high purity for practical applications. A very little quantity of foreign impurities in ADN may cause clogging of thruster nozzles and catalyst poisoning for the use of a liquid propellant. Thus, several purification processes for precipitated ADN particles such as repetition extraction, activated carbon adsorption and low-temperature extraction were presented in this study. The purifying methods helped to improve the chemical purity as evaluated by FT-IR and UV-Vis spectroscopy in addition to ion chromatography (IC) analyses. Among the purification processes, adsorption was found to be the best, showing a final purity of 99.8% based on relative quantification by IC. Thermal analysis revealed an exothermic temperature of $148^{\circ}C$ for the synthesized liquid monopropellant, but rose to $188^{\circ}C$ when urea was added.

Bacteriological and Chemical Hazard Analysis in Commercial Fish Products Minimally Processed (시판 어류 단순가공품의 세균학적 및 화학적 위해요소 분석)

  • Kim, Hyun-Jung;Lee, Dong-Soo;Kim, Il-Hoe;Kim, Young-Mog;Shin, Il-Shik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • The objective of this study was to analyze bacteriological and chemical hazards in minimally processed commercial fish products, including Hwangtae (freeze-dried pollock), dried anchovy, fermented anchovy sauce, and salted and dried yellow croaker. Escherichia coli counts from all samples were below the regulation limits of the Korean Ministry of Food and Drug Safety Standards on Quality of Seafood and Seafood Products (Food Code). However, the food poisoning bacterium Staphylococcus aureus was detected at levels above $1.0{\times}10^2$ colony forming units (CFU)/g in Hwangtae, dried anchovy, and salted and dried yellow croaker, which are commonly ingested without heating and pose bacteriological hazards. The detection of S. aureus, an organism indicative of poor personal hygiene, which can be introduced by employees and multiply during distribution, indicates the necessity of improving the sanitary control of minimally processed commercial fish products. Histamine was not detected from dried anchovy or salted and dried yellow croaker, but was detected at some of the highest levels in fermented anchovy sauces. This result suggests that efforts to reduce the amount of histamine in fermented anchovy sauces are required.

A Study for Medical Mineral Reaction Controls on Artificial Body Fluid Composition: Gastric Juice-Cinnabar Reaction and Concentration of Mercury Complex (가상체액에 대한 광물약의 반응특성 모델링 ; 위액-주사 반응과 수은착물의 농도)

  • 박맹언;김선옥
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • The medical mineral menas a single mineral or a complex of minerals. It is natural material. using the medical action of he major or the minor elements, and traditional medicine stuff which has been used since long time ago. Jusa, cinnabar as the mineral name, is the product of the hydrothermal process. It is used to relax the body and cure high blood pressure, apoplexy and cardiopathy. Jusais the major component of "An shin hwan" and "Woo hwang chung shim hwan" nowadays because it has such an excellent calm effect. In addition, it is used to cure cancers such as esophageal cancer and gastric cancer. Jusa composed of mercuric sulfide causes mercury poisoning such as Minamata disease. It is dealt with mineralogical property and chemical composition medical stuff in Korea and China, as well asmercury poisoning and medical action of Jusa in this study. In order to predct accumulation of the interior of the body of the major and minor elements in Jusa, leaching experiment of Jusa by artificial gastric juice was done as well as thermodynamic reaction modelling to know concentration of each species of body fluid. The minor elements of 24 species such as As, Pb, Cd, a and Fe by leaching reaction of Jusa and artificial gastric juice were leached. We can know the fact that as is less than 1 ppm, Hg is less than 25 ppm and Cd and m are not detected. In addition, mercury exists as species of Hg2+, HgCl+, HgCl2, HgCl3-, HgCl42-, HgClOH, HgS(H2S)2, Hg(HS)3-, HgS22-, HgOH and Hg(OH)2 by reaction modelling between Jusa and artificial gastric juice. The concentration of sulfide complexes is 24.2 ppm and that of others is less than 10 ppm. According to increasing pH, the concentration of HgS(H2S)2, Hg(HS)3+, HgS22- and Hg(OH)2 increases, whereas the concentration of HgCl+, HgCl2, HgCl3- and HgCl42- decreases. Therefore, Jusa is very useful for the development of new medicine because it is possible to predict formation of the body species and species accumulation on mercury known as a toxic element and concentration changes of toxicity and efficiency.city and efficiency.

  • PDF

Korean Food Review Analysis Using Large Language Models: Sentiment Analysis and Multi-Labeling for Food Safety Hazard Detection (대형 언어 모델을 활용한 한국어 식품 리뷰 분석: 감성분석과 다중 라벨링을 통한 식품안전 위해 탐지 연구)

  • Eun-Seon Choi;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • Recently, there have been cases reported in the news of individuals experiencing symptoms of food poisoning after consuming raw beef purchased from online platforms, or reviews claiming that cherry tomatoes tasted bitter. This suggests the potential for analyzing food reviews on online platforms to detect food hazards, enabling government agencies, food manufacturers, and distributors to manage consumer food safety risks. This study proposes a classification model that uses sentiment analysis and large language models to analyze food reviews and detect negative ones, multi-labeling key food safety hazards (food poisoning, spoilage, chemical odors, foreign objects). The sentiment analysis model effectively minimized the misclassification of negative reviews with a low False Positive rate using a 'funnel' model. The multi-labeling model for food safety hazards showed high performance with both recall and accuracy over 96% when using GPT-4 Turbo compared to GPT-3.5. Government agencies, food manufacturers, and distributors can use the proposed model to monitor consumer reviews in real-time, detect potential food safety issues early, and manage risks. Such a system can protect corporate brand reputation, enhance consumer protection, and ultimately improve consumer health and safety.

Molecular Structure of PCP Pincer Complexes: Poisoning Catalyst on the Dehydrogenation of Alkanes (알칸의 탈수소화반응에서의 촉매독 화합물의 분자구조)

  • Lee Ji Hyun;Chun Sang Jin;Kwon Ki Hyeok;Lee Do Weon
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • The dihydrido P-C-P pincer complex, $IrH_2{C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (1), was successfully prepared from the reaction of the hydrochloride complex, $IrClH (C_6H_3-2,6-(CH_2PBu_2^t)_2}$, and super acid $(LiBEt_3H)$ under 1 atm of hydrogen in pentane solution at room temperature and followed by Heating at $130^{\circ}C$ in vacuo. Jensen recently found that the dihydrido P-C-P pincer complex 1 is a highly active homogeneous catalyst for the transfer dehydrogenation of alkanes with unusual longterm stability at temperatures as high as $200^{\circ}C$. The treatment of dihydrido complex 1 with nitrogen, water, carbon dioxide, and carbon monoxide in presence of tert-butylethylene (the) at room temperature in an appropriate solution gave the dinitrogen complex, $[Ir{C-6H_3-2,6-(CH_2PBu_2^t)_2}]_2({\mu}-N_2)$ (2), the hydrido hydroxyl complex, $IrH(OH){C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (3), the carbon dioxide complex, $Ir({\eta}^2-CO_2) {C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (including the bicarbonate complex, $IrH({\kappa}^2-O_2COH){C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(4))$, and the carbonyl complex, $Ir(CO) {C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(5)$ (including the carboxyl complex, $IrH(C(O)OH) {C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(6))$, in good yield, respectively. These P-C-P iridium complexes were isolated and characterized by $^1H,\;^{13}C,\;^{31}P\; NMR$, and IR spectroscopy. In addition, the complexes (1-6) were characterized by a single crystal X-ray crystallography. These complexes account for these small molecules' inhibition of dehydrogenation of alkanes catalyzed by the dihydrido complex 1.

Ammonia Conversion in the Presence of Precious Metal Catalysts (귀금속촉매하에서 암모니아의 전환반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.806-812
    • /
    • 2008
  • The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

Risk Analysis and Safety Assessment of Microbiological and Chemical Hazards in the Raw Short-Neck Clams Ruditapes philippinarum Distributed in the Yeongnam and Honam Area During the Spring Season (봄철 영·호남 지역에서 유통되는 생바지락(Ruditapes philippinarum)의 미생물학적·화학적 위해요소 분석 및 안전성 평가)

  • Kim, Ji Yoon;Jeon, Eun Bi;Song, Min Gyu;Kim, Jin Soo;Lee, Jung Suck;Heu, Min Soo;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.896-903
    • /
    • 2021
  • For the safety assessment of microbiological and chemical hazards in raw short-neck clam Ruditapes philippinarum distributed in the Yeongnam and Honam areas during the spring season, the contamination levels of total viable bacteria, coliforms, Escherichia coli, and nine pathogenic bacteria (Staphylococcus aureus, Salmonella spp., Vibrio parahaemolyticus, Clostridium perfringens, Listeria monocytogenes, enterohemorrhagic Escherichia coli, Yersinia enterocolitica, Bacillus cereus, Campylobacter jejuni) as microbiological hazards, and heavy metals (lead, cadmium, total mercury), benzopyrene, shellfish poison (paralytic, diarrhetic, amnesic), and radioactivity (131I, 134Cs+137Cs) were also analyzed in 15 samples based on the methods of the Korean Food Code. The average contamination levels of total viable bacteria were 3.11 (1.40-4.49) log CFU/g, and coliforms were detected in 5 out of 15 samples (1.18-1.85 log CFU/g). E. coli and S. aureus were not detected in all samples. Furthermore, the presence of 8 pathogens were not detected in all samples. The average contamination levels of lead, cadmium, and total mercury were 0.155 (0.079-0.264), 0.160 (0.040-0.287), and 0.017 (0.008-0.026) mg/kg, respectively. Benzo(a)pyrene, shellfish poison, and radioactivity were not detected in all samples. The results of this study suggest that the safety against all microbiological and chemical hazard factors in raw short-neck clams distributed in markets has been assured.

The analysis of ethylene glycol and metabolites in biological specimens (생체시료에서 에틸렌 글리콜과 그 대사체 분석에 관한 연구)

  • Park, Seh-Youn;Kim, Yu-Na;Kim, Nam-Yee
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • Ethylene glycol (EG) is produced commercially in large amounts and is widely used as antifreeze or deicing solution for cars, boats, and aircraft. EG poisoning occurs in suicide attempts and infrequently, either intentionally through misuse or accidental as EG has a sweet taste. EG has in itself a low toxicity, but is in vivo broken down to higher toxic organic acids which are responsible for extensive cellular damage in various tissues caused principally by the metabolites glycolic acid and oxalic acid. The most conclusive analytical method of diagnosing EG poisoning is determination of EG concentration. However, victims are sometimes admitted at a late stage to hospitals or died during emergency treatment like a gastric lavage or found rotten dead, when blood EG concentrations are low or not detected. Therefore, in this study, the identification of EG was not only performed by gas chromatograpyc-mass spectrometry (GC-MS) following derivatization but also further toxicological analyses of metabolites, glycolic acid (GA) and oxalic acid (OA), were performed by ion chromatography in various biological specimens. A ranges of blood concentrations (3 cases) was $10\sim2,400\;{\mu}g/mL$ for EG, $224\sim1,164\;{\mu}g/mL$ for GA and ND $\sim40\;{\mu}g/mL$ for OA, respectively, In other biological specimens (liver, kidney, bile and pleural fluid), a range of concentrations (3 cases) was ND $\sim55,000\;{\mu}g/mL$ for EG, ND $\sim1,124\;{\mu}g/mL$ for GA and ND $\sim60\;{\mu}g/mL$ for OA, respectively. Liver and kidney tissues were recommended specimens including blood because OA, a final metabolite of EG, was identified large amounts in these despite no detectable EG caused by some therapy.