• Title/Summary/Keyword: chemical oxide

Search Result 3,475, Processing Time 0.029 seconds

Low Temperature Growth of Silicon Oxide Thin Film by In-direct Contacting Process with Photocatalytic TiO2 Layer on Fused Silica (광촉매 TiO2 층의 비접촉식 공정을 통한 저온 실리콘 산화박막 성장)

  • Ko, Cheon Kwang;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.236-241
    • /
    • 2008
  • The possibility of silicon oxidation through the aerial-diffusion of active oxygen species has been evaluated. The species originate from the surface of $TiO_2$ exposed by UV. Among process parameters such as UV intensity, substrate temperature and chamber pressure with oxygen, UV intensity was a major parameter to the influence on the oxide growth rate. When 1 kW high pressure Hg lamp was used as a UV source, the growth rate of silicon oxide was 8 times as faster as that of a 60 W BLB lamp. However, as the chamber pressure increased, the growth rate was declined due to the suppression of aerial diffusion of active oxygen species. According to the results, it could be confirmed that the aerial-diffusion of active oxygen species from UV-irradiated photocatalytic surface can be applied to a new method for preparing an ultra-thin silicon oxide at the range of relatively low temperature.

The Application for Electrophotographic Photoreceptors of Zinc Oxide Adsorbed Copper Phthalocyanine and Sunfast Yellow (색소 흡착 산화아연 감광체의 전자사진 특성에 관한 연구)

  • Heo, Sun Ok;Kim, Young Soon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.632-639
    • /
    • 1994
  • For dye sensitization of zinc oxide in the visible region, copper phthalocyanine(CuPc) and sunfast yellow(SY) were adsorbed in two layers on zinc oxide powder. The adsorption structures of $\alpha-and\beta-CuPc$ on zinc oxide were investigated by photoacoustic, IR and Raman spectra. The ${\alpha}-and\;{\beta}$-polymorphs exhibited dimeric structure or molecular aggregates. The surface photovoltaic effect of ZnO/CuPc/SY showed higher than that of ZnO/SY/CuPc and $ZnO/\beta-CuPc/SY$ indicated better photosensitive than $ZnO/\alpha-CuPc/SY.$ Electrophotographic sensitivity of $ZnO/\beta-CuPc/SY$ was $$S_{1/2}=2.99{\times}10^{-2}(erg/cm^2)^{-1}$ at 630 nm.

  • PDF

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

Synthesis of Lithium Manganese Oxide by Wet Mixing and its Removal Characteristic of Lithium Ion (습식혼합에 의한 리튬망간 산화물의 합성과 리튬이온 제거특성)

  • You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyn
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.446-452
    • /
    • 2013
  • In this paper, the wet mixing method was introduced to prepare spinel lithium manganese oxide (LMO) with $Li_2CO_3$ and $MnCO_3$. The physical properties of the resulting lithium manganese oxide were characterized by the XRD and SEM. The adsorption properties of LMO for $Li^+$ were investigated by batch methods. The maximum adsorption capacity of lithium was calculated from Langmuir isotherm and found to be 27.25 mg/g. The LMO are found to have a remarkable lithium ion-sieve property with distribution coefficients ($K_d$) in the order of $Ca^{2+}$ < $K^+$ < $Na^+$ < $Mg^{2+}$ < $Li^+$, which is promising in the lithium extraction from seawater.

The Variation of the Major Compounds of Artemisia princeps var. orientalis (Pampan) Hara Essential Oil by Harvest Year (수확 연도에 따른 쑥 정유의 주요 화합물 함량 변화)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.533-543
    • /
    • 2015
  • This study investigated the chemical composition of Artemisia princeps var. orientalis (Pampan) Hara (ssuk in Korea) essential oil and the quantitative changes of major terpene compounds according to the time of harvest. The essential oils obtained by hydrodistillation extraction from the aerial parts of ssuk were analyzed by GC and GC-MS. The essential oil composition of ssuk was characterized by higher contents of mono- and sesqui- terpene compounds. Ninety-nine volatile flavor compounds were identified in the essential oil from ssuk harvested in 2010, with camphor (11.9%), ${\beta}-caryophyllene$ (9.11%), dehydrocarveol (8.51%), and borneol (7.72%) being the most abundant compounds. Eighty-three compounds were identified in the essential oil from the plant harvested in 2011, with borneol (12.36%), caryophyllene oxide (12.29%), ${\beta}-caryophyllene$ (10.24%), camphor (9.13%), and thujone (8.4%) being the most abundant compounds. Eighty-four compounds were identified in the essential oil from the plant harvested in 2012, with ${\beta}-caryophyllene$ (20.25%), caryophyllene oxide (14.63%), and thujone (11.55%) being the major compounds. Eighty-nine compounds were identified in the essential oil from the plant harvested in 2013, with thujone (23.11%), alloaromadendrene oxide (12.3%), and ${\beta}-caryophyllene$ (11.48%) being the most abundant compounds. Thujone and aromadendrene oxide contents increased significantly from 2010 to 2013, while camphor and dehydrocarveol contents decreased significantly during those 4 years. The quantitative changes in these 4 compounds according to the time of harvest can served as a quality index for ssuk essential oil. The ecological responses to recent climate changes may be reflected in the chemical components of natural plant essential oils.

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.

The Interaction of Nonionic Surfactant with Iodine in the Presence of $Ca^{2+}$ ($Ca^{2+}$ 존재하에서 비이온성 계면활성제와 요오드와의 상호작용)

  • Park Jeoung-Sun;Kwon Oh-Yun;Paek U-Hyon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 1993
  • In the presence of $Ca^{2+}$ ion, the charge transfer (CT) interaction of nonionic surfactants, $nonylphenol-(ethylene oxide)_n\;[NP-(EO)_n; n = 11, 40, 100]$ with iodine in aqueous solution were investigated by UV-visible spectrophotometer. The characteristics of spectra depended on the concentration of $Ca^{2+}$ ion and the number of EO unit. Above CMC, the intensity of the CT band by the addition of $Ca^{2+}$ ion for the $NP-(EO)_{11}$ and $NP-(EO)_{40}$ increased and then decreased, while for the $NP-(EO)_{100}$ continuously increased. The increase in the intensity of CT band were attributed to the compactness of micelle in the presence of $Ca^{2+}$ ion. These phenomena may be explained by the fact that the linear ethylene oxide (EO) chain, to be free configuration in aqueous solution, could form a pseudo-crown ether structures capable of forming complexes with $Ca^{2+}$ ion.

  • PDF

Nano-Ruthenium Oxide Polymeric Composite pH Electrodes (나노 Ruthenium Oxide 고분자 복합재료 pH전극)

  • Park, Jongman
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • Surface renewable nano-$RuO_2$/poly(methyl methacrylate) polymeric composite pH electrodes were prepared. The composite electrode with 53 wt% of nano-$RuO_2$ showed similar good response characteristics to nano-$IrO_2$ composite electrode reported earlier. It showed response slope of -58.7 mV/pH, response time of <1 s, surface renewability of $-57.0{\pm}0.3mV/pH$ (n=5) and long time stability for a month as well as low interferences but high interferences by electrochemically active species like $I^-$ and $Fe(CN){_6}^{3-}$. However, the response slope and time became worse at higher pH than 9 compared to those of nano-$IrO_2$ composite electrodes possibly due to the difference of physical properties resulting from higher content of nano-$RuO_2$ in polymeric composite matrix.

The Near Infrared Spectroscopic Studies on the Hydrogen Bonding Ability of Thiopropionamide (티오프로피온 아미드의 수소 결합 능력에 대한 근 적외선 분광학 연구)

  • Ju, Sul-A;Park, Jeunghee;Yoon, Chang-Ju;Choi, Young-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.837-841
    • /
    • 1995
  • Thermodynamic parameters for the hydrogen bonding between thiopropionamide(TPA) and proton donors such as triethylphosphine oxide(TEPO), triphenylphosphine oxide(TPPO), trimethylphosphate(TMP), and tributyl phosphate(TBP) in dilute carbon tetrachloride solution have been measured by near-IR spectroscopy. The νa + amide Ⅱ combination band of TPA has been resolved into two Lorentzian-Gaussian product components which have been identified with monomeric TPA and 1 : 1 hydrogen bonded complex. The equilibrium constants and thermodynamic parameters for the formation of 1 : 1 hydrogen bonded complex have been obtained by the analysis of concentration and temperature dependent spectra. The standard enthalpies for the 1 : 1 hydrogen bonded complex formation of TPA with TEPO, TPPO, TMP, and TBP in CCl4 have been found to be - 21.4, - 16.8, - 12.8, and - 12.9 kJ/mol, respectively. The results are explained by the inductive and steric effects of substituents.

  • PDF

Thermodynamics on the Mixed Micellar Formation of Dimethyldodecylamine Oxide in Water/n-Propanol (Dimethyldodecylamine Oxide 의 물/n-프로판올 용매에서 혼합미셸 형성에 관한 열역학적 연구)

  • Lee Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.562-569
    • /
    • 1993
  • The pseudophase separation model is used to describe the effects of pH and n-propanol on the mixed micellar formation of protonated and unprotonated dimethyldodecylamine oxides. Dimethyl-dodecylamine oxide surfactant molecules may exist in aqueous solution in either nonionic (unprotonated) or cationic (protonated) form, and they can be modeled thermodynamically as a binary mixture of cationic and nonionic surfactants. The composition of the binary mixture is varied by adjusting the solution pH. And activities, micellar compositions, and monomeric compositions of two surfactant species can be calculated directly from the experimental titration data by applying pseudophase separation model to the micellar system of DDAO in water/n-propanol. The critical micellar concentrations and the p$K_a$ values of the binary mixture systems are dependent on the micellar composition of the protonated cationic surfactant (X); especially they show the minimum phenomena when they are plotted against the micellar composition of the protonated cationic surfactant (X). The critical micellar concentration of the binary mixed DDAO system is generally decreased when n-propanol is added to the binary mixture system, and the degree of decrease is dependent on the concentration of n-propanol.

  • PDF