• Title/Summary/Keyword: chemical oxide

Search Result 3,475, Processing Time 0.03 seconds

Synthesis and Characterization of Molecular Composite Prepared from Layered Perovskite Oxide, $HLa_2Ti_2NbO_{10}$

  • 홍영식;김시중
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.623-628
    • /
    • 1997
  • A layered perovskite oxide, $RbLa_2Ti_2NbO_{10}$, was prepared and investigated for proton exchange and intercalation behaviors. Its protonated form, $Hla_2Ti_2NbO_{10}$, exhibits the Bronsted acidity and reacts with organic amines. Polyoxonuclear cation, 4Al_{13}$, was then introduced into the interlayer by refluxing octylamine-intercalated compound with an $Al_{13}$ pillaring solution. These layered oxides were characterized by X-ray diffractometer, thermogravimeter, FT-infrared spectrometer and elemental analyzer. It is observed that the polyoxonuclear cation-pillared material exhibits a bilayer structure and is thermally more stable than organic counterpart at higher temperatures. The surface area of the pillared material annealed at 400 ℃ was the value of 25.1 m²/g.

A Versatile Methods for Synthesis of Graphene Sheets from Graphite (그라파이트로부터 그래핀 시트를 제조하는 다양한 합성방법)

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.280-284
    • /
    • 2009
  • The unique electronic property of graphene sheets provides potential applications in nanocomposites and fabricating various nicroelectrical devices, such as field-effect transistors, ultrasensitive sensors, and electromechanical resonators. Several effective techniques have been developed for preparing graphene sheets. Among these technique, mechanical exfoliation can produce pure graphene and epitaxial graphene sheets have been prepared by treatment of silicon carbide wafers at high temperature. Recently, graphene sheets have been developed by chemical reduction method from graphene oxide. In this work, we have synthesized graphene sheets based on mechanical exfoliation and chemical reduction methods. Graphene sheets were characterized by field-effect scanning electron microscope (FE-SEM). The size of graphene sheets was from few hundreds nanometer to decades micrometer.

  • PDF

Synthesis of (E,E)-2,4-Dienols from (E)-$\beta$-Chloro-$\gamma$-hydroxy-vinylmercurials and Olefins by Palladium(Ⅱ) Salt

  • Kim, Jin-Il;Lee, Jong-Tae;Choi, Cheol-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.235-237
    • /
    • 1986
  • Reaction of $(E)-{\beta}-chloro-{\gamma}$-hydroxyvinylmercurials, prepared by mercuration of propargyl alcohol and 2-methyl-3-butyne-2-ol, with olefins in the presence of a catalytic amount of $Li_2PdCl_4$ and 2 equiv of cupric chloride in methanol at $50^{\circ}C$ gave the corresponding (E,E)-2,4-dienols in moderate yields. However, addition of 1 equiv of inorganic bases such as magnesium oxide to the reaction mixture brings a rapid and clean vinylation and gave high yields of the dienols at room temperature. In the case of hindered (E)-2-chloro-3-chloromercuri-2-buten-1,4-diol prepared from 2-butyne-1,4-diol, reaction with olefins gave the dienols only in low yields even in the presence of 2 equiv of magnesium oxide.

A Global Planarization of Interlayer Dielectric Using Chemical Mechanical Polishing for ULSI Chip Fabrication (화학기계적폴리싱(CMP)에 의한 층간절연막의 광역평탄화에 관한 연구)

  • Jeong, Hea-do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.46-56
    • /
    • 1996
  • Planarization technique is rapidly recognized as a critical step in chip fabrication due to the increase in wiring density and the trend towards a three dimensional structure. Global planarity requires the preferential removal of the projecting features. Also, the several materials i.e. Si semiconductor, oxide dielectric and sluminum interconnect on the chip, should be removed simultaneously in order to produce a planar surface. This research has investihgated the development of the chemical mechanical polishing(CMP) machine with uniform pressure and velocity mechanism, and the pad insensitive to pattern topography named hard grooved(HG) pad for global planarization. Finally, a successful result of uniformity less than 5% standard deviation in residual oxide film and planarity less than 15nm in residual step height of 4 inch device wafer, is achieved.

  • PDF

Effect of Heat Treatments on Tungsten Polycide Gate Structures (텅스텐 폴리사이드 게이트 구조에서의 열처리 효과)

  • 고재석;천희곤;조동율;구경완;홍봉식
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.3
    • /
    • pp.376-381
    • /
    • 1992
  • Tungsten silicide films were deposited on the highly phosphorus-doped poly Si/SiO2/Si substrates by Low Pressure Chemical Vapor Deposition. They were heat treated in different conditions. XTEM, SIMS and high frequency C-V analysis were conducted for characterization. It can be concluded that outdiffusion of phosphours impurity throught the silicide films lead to its depletion in the poly-Si gate region near the gate oxide, resulting in loss of capacitance and increase of effective gate oxide thickness.

  • PDF

Synthesis and Characterization of Zinc Phosphate Cement Powder and Cement-forming Liquid

  • Park, Choon-Keun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.269-273
    • /
    • 1997
  • Chemical composition of cement powder influences the setting time and early compressive strength development. The setting time increases as the amounts of zinc oxide and magnesium oxide are increased. For one day compressive strength development, a cement powder with a composition 90% ZnO, 8% MgO and 2% silica resulted in the highest strength (greater than 1, 090 kg/$\textrm{cm}^2$). Cement-forming liquids also need to be buffered, with both aluminum and zinc ions, for a good consistency and a higher strength of the zinc phosphate cement. These liquids control the setting reactions.

  • PDF

Study on Electrochemical Characteristics and Fabrication of Catalytic Electrode (복합 촉매 전극의 제조 및 전기화학적 특성에 관한 연구)

  • 민병승;정원섭;김광호;민병철;이미혜
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2002
  • Most of organic compounds discharged from industrial wastewater are treated by chemical oxidation, adsorption and biodegradable process. This process has been demanded a new advanced environmental wastewater treatment process. From this point of view, an electrochemical oxidation process using electrocatalysts has been developed for the destruction of organic compounds. Through this study, a ruthenium oxide/iridium oxide supported on titanium expanded metal was fabricated by thermal decomposition method and its performance was excellent during this experiment.

Sol-Gel Processing for Preparation of Metal Oxide Films

  • Korobova Natalya;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.259-264
    • /
    • 2000
  • Systematic research of metal alkoxide electrophoretic deposition has been developed. The formation mechanism of electrophoretic deposits has been offered. The structure study of dry and heat-treated electrophoretic deposits has been established. The concrete examples of one and bi-component oxide thin film formation were considered. The new approaches for thin film technology have developed on various substrates of different shapes and sizes. The correlation between thin film structure, mechanism of their formation, and physico-chemical properties has been determined.

  • PDF

Fabrication of Niobium Oxide Nanorods by the Anodization Method (양극산화법에 의한 니오븀 산화물 나노로드 제조)

  • Jung, Eun-Hye;Chang, Jeong-Ho;Jeong, Bong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.196-200
    • /
    • 2011
  • The formation of niobium oxide microcones on niobium substrates was investigated in NaF to the HF electrolytes. This condition builds on the uniqueness of the microstructures niobium oxide. The dimensions and integrity of the bulk microstructures were found to be strongly dependent on potential, temperature, electrolyte composition, and anodization time. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodization. From XRD patterns of the anodized specimens, the microcones consisted of crystalline $Nb_2O_5$. We demonstrated niobium oxide microcone structures with nanorods. The anodized niobium oxide microcone texture revealed nanorod bundles. The surface of $Nb_2O_5$ microcones is very regular and has a nano-scale. The surface morphologies of the nanorods were examined using FE-SEM. EDS analyses show that the anodically prepared niobium oxide consists of $Nb_2O_5$. The aim of this study is to find the condition of forming the favorable nanorods by anodization method.

A Study on Formation of Hemoglobin Adduct in Blood of Mice Inhaled with Ethylene Oxide (에틸렌옥사이드에 폭로된 흰쥐의 혈액에 형성된 헤모글로빈 부가체에 대한 연구)

  • Lee Jin-Heon;Shin Ho-Sang;Ahn Hye-Sil
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.164-170
    • /
    • 2006
  • Ethylene oxide is a genotoxic carcinogen with widespread uses as industrial chemical intermediate and gaseous sterilant. 2-hydroxyethylated N-terminal valine in Hb is a good biomarker for biological monitoring of ethylene oxide exposure, because of its stability. For measuring the hemoglobin adduct formed by exposure of ethylene oxide, we studied the determination of (N-2-hydroxy-ethyl)valine(HEV) in hemoglobin adduct by using GC/MS. Firstly we synthesized HEV with 2-amino-ethanol and bromoisovaleric acid(BIVA) and confirmed it with GC/MS-FID. Its fragmentations were m/z 116(base ion, M+-45) and m/z 130(M+-31). For measuring HEV with higher sensitivity, we use derivatives which were PFPITH(pentafluorophenylisothiocianate) and TBDMS (tributyldimethylsilylation) by using Edman procedure. Its fragmentation were m/z 425(M+-57), m/z 383(M+-99) and m/z 172(M+-310) by using GC/MS. We did biological monitoring for mice inhalation exposure with 400 ppm ethylene oxide. The concentrations of hemoglobin adduct were $168{\pm}3.8\;and\;512{\pm}04$(nmol g-1 globin) at 0.5 hr/day 400 ppm ethylene oxide inhalation exposure group, and $631{\pm}17\;and\;2265{\pm}9.4$(nmol g-1 globin) at 1.0 hr/day 400 ppm ethylene oxide inhalation exposure for 1 and 4 weeks, respectively. We confirmed that (N-2-hydroxy-ethyl)valine(HEV) of hemoglobin was a good biomarker for biomonitoring of ethylene oxide exposure, and can measured with derivatives such as PFPITH(pentafluorophenylisothiocianate) and TBDMS(tributyldimethylsilylation) by using GC/MS.