• Title/Summary/Keyword: chemical oxide

Search Result 3,459, Processing Time 0.027 seconds

Study on flow behavior of polymer solutions in microchannels (미세구조 내에서의 사출성형 흐름에 관한 연구)

  • Kim Dong-Hak;Xu Guojun;Koelling Kurt W.;Lee L.James
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.471-475
    • /
    • 2006
  • Filling the microchannels is very important in designing micro-injection molding, microdevices, etc. In this paper, flow dynamics was studied in injection molding with microchannels. A transparent PMMA mold was designed and the flow dynamics was observed. The experiment was performed using poly (ethylene oxide) (PEO) and polyacrylamide (PA) aqueous solutions. The transignt dynamic flow and flow competition between the base plate and the microchannels were observed. The flow observation was used to explain previous filling length results in microchannels during micro-injection molding.

  • PDF

Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction

  • Kwon, Hee Sun;Um, Byung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.753-761
    • /
    • 2016
  • Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature ($25{\sim}65^{\circ}C$), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at $25^{\circ}C$, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at $25.8^{\circ}C$, pH=0.6 and 37.2 min residence time.

A Study on Oxidation-Resistance of Iron Nanoparticles Synthesized by Chemical Vapor Condensation Process (화학기상응축법으로 제조된 철 나노분말의 산화저항에 관한 연구)

  • Lee Dong-Won;Yu Ji-Hun;Bae Jeoung-Hyun;Jang Tae-Suk;Kim Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.225-230
    • /
    • 2005
  • In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below $130^{\circ}C$ in air was $10\~40$ times higher than that of the air- passivated particles.

A Study on the Steam-Hydrocarbon Reforming Catalysts (탄화수소의 수증기개질 촉매에 관한 연구)

  • Lee Mook Kwon;Tae Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 1971
  • In this study, several nickel catalysts for the steam-hydrocarbon reforming process were prepared from various nickel salt, magnesium oxide, alumina and kaolinite. The activity and strength of the catalysts were investigated. 1. The proper composition of the calcined catalysts are: NiO (5-15%)-MgO(10-20%)-$Al_2O_3$(10-40%)-Kaolinite(50-80%). 2. The admixed or cosedimented ingredients of the catalysts was pelletized and calcinated at 1000 or $1150^{\circ}C$. Calcination at $1150^{\circ}C$ for an hour was optimum. 3. The water to oil ratio (W/O) for reforming of hexane should be above 7 mole/mole. As the W/O increases, more carbon dioxide and hydrogen, but less carbon monoxide was produced. Also carbon deposition become lessen at higher W/O. 4. Maximum conversion had attained at about $850^{\circ}C$. As the reaction temperature increases, more carbon monoxide and hydrogen, but less carbon dioxide and lower hydrocarbon was produced. 5. The percent conversion at $850^{\circ}C$ was about 80%, using a catalyst which the nickel oxide content are 5%.

  • PDF

Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer ((Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향)

  • Yang, So Hyun;Bae, Jin A;Song, Yu Jin;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.

Preparation and Characterization of $TiO_2$Filled Sulfonated Poly(ether ether ketone) Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Kim Han-Joo;Kalappa Prashantha;Son Won-Keun;Park Jong-Eun;Oshaka Tetsuya;Kim Hyun-Hoo;Hong Ji-Sook;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.165-170
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticle content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

Synthesis and Physical Properties of MO·Fe12O18 (M/Ba and Sr) Nanoparticles Prepared by Sol-Gel Method Using Propylene Oxide (Propylene Oxide를 이용한 졸-겔법에 의한 MO·Fe12O18 (M/Ba, Sr) 나노 분말의 합성과 물리적 특성)

  • Lee, Su Jin;Choe, Seok Burm;Gwak, Hyung Sub;Paik, Seunguk
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.420-425
    • /
    • 2006
  • Nano sized mixed metal hexagonal ferrite powders with improved magnetic properties have been prepared by sol-gel method using propylene oxide as a gelation agent. To obtain the desired ferrite, two different metal ions were used. One of the ions has only +2 formal charge. The key step in the processes is that hydrated $Ba^{2+}$ or $Sr^{2+}$ ions are hydrolyzed and condensed at the surface of the previously formed $Fe_{2}O_{3}$ gel. In this processes, all the reaction can be finished within a few minutes. The magnetic properties of the produced powder were improved by heat treatment. The highest values of the magnetic properties were achieved at temperature $150^{\circ}C$ lower than those of the previously published values. The highest observed values of coercivity and the saturation magnetization of Sr-ferrite and Ba-ferrite powder were 6198 Oe, 5155 Oe and 74.4 emu/g, 68.1 emu/g, respectively. The ferrite powder annealed at $700^{\circ}C$ showed spherical particle shapes. The resulting spheres which were formed by the aggregation of nanoparticles with size 3~5 nm have diameter around 50 nm. The powder treated at $800^{\circ}C$ showed hexagonal-shaped grains with crystallite size above 500 nm.

Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics (전기방사법을 이용한 PVdF/Fe3O4-GO(MGO) 복합 분리막 제조 및 비소 제거 특성평가)

  • Jang, Wongi;Hou, Jian;Byun, Hongsik;Lee, Jae Yong
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.480-489
    • /
    • 2016
  • In this study, the PVdF/MGO composite nanofiber membranes (PMGs) introducing Iron oxide-Graphene oxide ($Fe_3O_4/GO$, Metallic graphene oxide; MGO) was prepared via electrospinng method and its arsenic removal characteristics were investigated. The thermal treatment was carried out to improve the mechanical strength of nanofiber membranes and then the results showed that of outstanding improvement effect. However, in case of PMGs, the decreasing tendency of mechanical strength was indicated as increasing MGO contents. From the results of pore-size analysis, it was confirmed that the porous structured membranes with 0.3 to $0.45{\mu}m$ were prepared. For the water treatment application, the water flux measurement was carried out. In particular, PMG2.0 sample showed about 70% improved water flux results ($153kg/m^2h$) compared to that of pure PVdF nanofiber membrane ($91kg/m^2h$) under the 0.3 bar condition. In addition, the PMGs have indicated the high removal rates of both As(III) and As(V) (up to 81% and 68%, respectively). Based on the adsorption isotherm analysis, the adsorption of As(III) and As(V) ions were both more suitable for the Freundlich. From all of results, it was concluded that PVdF/MGO composite nanofiber membranes could be utilized as a water treatment membrane and for the Arsenic removal applications.