• Title/Summary/Keyword: chemical modification

Search Result 1,275, Processing Time 0.029 seconds

Surface modification characteristics of activated carbon fibers for hydrogen storage (수소저장용 활성탄소섬유의 표면개질 특성)

  • Kim, Shin-Dong;Kim, Ju-Wan;Im, Ji-Sun;Cho, Se-Ho;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2006
  • Activated carbon fibers (ACFs) with high surface area and pore volume were modified with metal Ni impregnation and fluorination and investigated hydrogen storage properties by volumetric method. Micropore volume values of ACFs obtained from surface modification with Ni impregnation and fluorination were decreased 9 and 35 %, respectively. Hydrogen storage capacities of fluorinated ACFs were slightly changed, on the other hand, that of Ni impregnated ACF was considerably increased. It means that hydrogen was not only adsorbed on ACF surface, but also on Ni metal surface by means of dissociation. Although the microphone volume of ACF modified with fluorination was decreased, its hydrogen storage were found not to be changed compared with fresh ACF. These results indicated that the surface of ACF after fluorination modification may be strongly attracted hydrogen due to high electronegativity of fluorine. Therefore, it was proven that hydrogen storage capacity was related with micropore volume and surface property of carbon materials as well as specific surface area.

A Study on the Characteristics and Surface Modification of the Zeocarbon for Water Treatment

  • Kim, Seo-A;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Jung-Min
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.166-172
    • /
    • 2005
  • The objective of this study was to investigate the possibility of application for water treatment using the zeocarbon. The zeocarbon was mixture of zeolite and activated carbon. In general, the application of commercial zeocarbon to water treatment is difficult because of weak strength in water and the high pH value of effluents after water treatment. Therefore, we have modified the surface of zeocarbon. For the surface modification, we used the acid treatment to make surface functional group. As a result of modification, was created functional group on zeocarbon surface and was formed mesopore in zeocarbon. The surface modified zeocarbon was applied to removal of nitrogen. In removal experiments of nitrogen, removal efficiency was very high. And, strength of zeocarbon after water treatment and pH of effluents were stabilized. This indicates that the surface modified zeocarbon was easy to recover and reuse. Consequently, our results were shown the possibility of application for water treatment using the surface modified zeocarbon.

  • PDF

Effect of surface modification of carbon felts on capacitive deionization for desalination

  • Lee, Jong-Ho;Ahn, Hong-Joo;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.93-100
    • /
    • 2015
  • Surface modified carbon felts were utilized as an electrode for the removal of inorganic ions from seawater. The surfaces of the carbon felts were chemically modified by alkaline and acidic solutions, respectively. The potassium hydroxide (KOH) modified carbon felt exhibited high Brunauer-Emmett-Teller (BET) surface areas and large pore volume, and oxygen-containing functional groups were increased during KOH chemical modification. However, the BET surface area significantly decreased by nitric acid ($HNO_3$) chemical modification due to severe chemical dissolution of the pore structure. The capability of electrosorption by an electrical double-layer and the efficiency of capacitive deionization (CDI) thus showed the greatest enhancement by chemical KOH modification due to the appropriate increase of carboxyl and hydroxyl functional groups and the enlargement of the specific surface area.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Preparation and Characterization of Multiwalled Carbon Nanotubes/Lyocell Composite Fibers (다중벽 탄소나노튜브/리오셀 복합섬유의 제조 및 특성조사)

  • Lu, Jiang;Zhang, Huihui;Shao, Huili;Hu, Xuechao
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.436-441
    • /
    • 2007
  • In this work, the multiwalled carbon nanotubes(MWNTs) were functionalized with sodium dodecylbenzene sulfonate(SDBS) and then MWNTs/Lyocell composite fibers were prepared. The properties of MWNTs, the functionlization on the surface of MWNTs and their dispersion in the cellulose matrix were characterized by TEM, SEM, WAXD and FT-IR. The results showed that SDBS has been coated successfully onto the surface of the MWNTs by functionlization. This can improve effectively the dispersion uniformity of MWNTs in NMMO aqueous solution and is helpful to prepare a spinnable spinning dope. Moreover, the resultant MWNTs/Lyocell composite fibers still have cellulose II crystal structure, and their tensile strength and initial modulus increased with the increasing draw ratio and reached the optimal value with adding 1 wt% MWNTs. The thermal stability of the composite fiber was also improved by the addition of the MWNTs.

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

The Quality Properties of Mortar for Using Hydraulic Modification Sulfur as Admixture for Cement (개질유황을 시멘트 대체 혼화재로 사용하기 위한 모르타르의 품질특성)

  • Kim, Ki-Hyung;Shin, Do-Chul;Jung, Ho-Jin;Lee, Jae-Nam;Kim, Byiung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • This study ascertained the possibility of use of sulfur abstracted from waste sulfur as a construction material through modification process and manufacturing high efficiency modification sulfur with superior quality on dispersibility and hydrophilic in normal temperature. Mechanic, behavior and chemical durability of mortar with added modification sulfur. The results of the study are as follows. The fluidity of mortar mixed with modification sulfur and compressive strength decreased as ratio of mixing of them increases. Flexural, tensile and bond strength of the mortar are also improved and shrinkage of it increases. Especially chemical durability of the mortar showed excellent resistance with the increase of ratio of mixing. Therefore this research has confirmed the modification sulfur can be used as a addmixture for cement.

  • PDF

Textile Surface Modification by Environmentally Friendly Waterborne Fluorinated Acrylate Copolymer (환경친화형 수분산성 불소 아크릴레이트 공중합체에 의한 섬유 표면개질)

  • Yoo Su-Yong;Kim Jung-Du;Moon Myung-Jun;Suh Cha-Su;Ju Chang-Sik;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.947-953
    • /
    • 2004
  • Waterborne fluorinated acrylate copolymer (WFAC) for surface modification of textile was synthesized from perfluoroalkyl ethyl acrylate, octadecyl acrylate, glycidyl methacrylate, surfactant and 3,3 methyl-methoxy butanol. The structures of the synthesized WFAC were determinated by FT-IR and $^{19}F-NMR$ analysis. The thermal stability investigated with DSC and TGA was decreased with increasing the content of fluorinated acrylate in the copolymer. However, the particle sizes of WFAC were increased with increasing the content of fluorinated acrylate in the copolymer. The surface energies calculated by contact angles of WFAC were in the range of 29.80$\~$13.41 dyne/cm. On the observing SEM of the textile surface treated with WFAC, the textile was swollen and compacted with increasing the concentration of water repellency agent. WFAC synthesized in this study showed a good water repellency.