• Title/Summary/Keyword: chemical ionization

Search Result 409, Processing Time 0.021 seconds

Review on the Analytical Methods and Ambient Concentrations of Organic Nitrogenous Compounds in the Atmosphere (대기 유기질소화합물의 분석방법 및 농도)

  • Choi, Na Rae;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.120-143
    • /
    • 2018
  • The analytical methods and their ambient levels of organic nitrogenous compounds such as nitrosamines, nitramines (nitroamines), imines, amides and nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the atmosphere are summarized and discussed. Sampling for the analysis of organic nitrogenous compounds was mostly conducted using high volume air sampler. The direct liquid extraction (DLE) using sonification and the pressurized liquid extraction (PLE) using the accelerated solvent extraction (ASE) have been frequently employed for the extraction of organic nitrogenous compounds in the atmospheric samples. After extraction, clean-up via filtration and the solid phase extraction (SPE) and concentrations using nitrogen and rotary evaporator have been generally conducted but in some studies the clean-up and concentration steps have been omitted to prevent the loss of analyte and improve the recovery rate of the analytical procedure. Instrumental analysis was mainly carried out using gas chromatography (GC) or the high performance liquid chromatography (HPLC) coupled with the single quadrupole mass spectrometer or tandem mass spectrometer in the electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) mode and analysis sensitivity of nitrosamines and nitramines were higher in NCI mode. Desirable sampling and analysis methods for analyzing particulate organic nitrogenous compounds are suggested.

Experimental Study on the Interference of Water Vapor on the Chemical Ionization of OH by Sulfur Hexafluoride Ion

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.120-123
    • /
    • 2014
  • The interference of water vapor on the chemical ionization (CI) of hydroxyl radicals (OH) by sulfur hexafluoride ion ($SF_6{^-}$) was investigated using a flow tube system coupled to a high-pressure CI mass spectrometer. Water vapor, which is required to study heterogeneous reactions of OH under real tropospheric conditions, transforms the reagent ion $SF_6{^-}$ into $SF_4O^-$ and $F^-(HF)_n$, resulting in a substantial loss in CI sensitivity. Therefore, under humid conditions, peaks corresponding to OH are drastically diminished, while those corresponding to OH-water complex ions ($[OH(H_2O)_n]^-$) are enhanced. $[OH(H_2O)_3]^-$ was observed as the major OH species. The obsercation of $[OH(H_2O)_n]^-$ by isolating humid conditions to the CI region and preliminary ab initio calculations suggested that $[OH(H_2O)_n]^-$ ions were produced from reactions between OH ions ($OH^-$) and water molecules. An additional helium buffer flow introduced into the CI region reduced loss of the reagent ion and resulted in a partial recovery of OH peak intensities under humid conditions.

Toxicoproteomics in the Study of Aromatic Hydrocarbon Toxicity

  • Cho, Chang-Won;Kim, Chan-Wha
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 2006
  • The aromatic hydrocarbons (AHs), which include benzene, polycyclic aromatic hydrocarbons, and dioxin, are important chemical and environmental contaminants in industry that usually cause various diseases. Over the years, numerous studies have described and evaluated the adverse health effects induced by AHs. Currently, "Omics" technologies, transcriptomics and proteomics, have been applied in AH toxicity studies. Proteomics has been used to identify molecular mechanisms and biomarkers associated with global chemical toxicity. It could enhance our ability to characterize chemical-induced toxicities and to identify noninvasive biomarkers. The proteomic approach (e.g. 2-dimensional electrophoresis [2-DE]), can be used to observe changes in protein expression during chemical exposure with high sensitivity and specificity. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization-quadrupole (ESI-Q)-TOF MS/MS are recognized as the most important protein identification tools. This review describes proteomic technologies and their application in the proteomic analysis of AH toxicity.

An Evaluation of Liquid Chromatography/Mass Specrometry with Atmospheric Pressure Chemical Ionizarion for the Rapid and Simultaneous Measurement of Carbamate Pesticides and Organophosphorus Pesticides

  • Kim, Byeong Ju;So, Hyeon Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.471-476
    • /
    • 2000
  • Liquid chromatography/mass spectrometry with an atmospheric pressure chemical ionization interface (LC/APCI/MS) is evaluated for the simultaneous determination of carbamate pesticides and organophosphorus pesticides in a single chromatographic analysis. APCI mass spectra of those compounds were obtrained to study their ionization characteristics. APCI provided abundant ions such as protonated molecules and characteristic fragment ions for carbamate pesticides and organophosphorus pesticides. To evaluate the feasibility of the LC/APCI/MS for a routine quantitative analysis, the linearity and repeatability of LC/APCI/MS were examined by measuring standard solution mixtures of five carbamate pesticides and four organophosphorus pesticides over the range of 1 to 100 ㎍/mL. Teh peak areas in chromatograms of characteristic ions for those compounds showed less than 3% of variation from run to run. The standard calibration curves for the nine pesticides show good linearity in the concentration range. The detection limits of the LC/APCI/MS system for those compounds range from 0.006 to 0.2 ng.

The Possible Signs of Hydrogen and Helium Accretion from Interstellar Medium on the Atmospheres of F-K Giants in the Local Region of the Galaxy

  • Yushchenko, Alexander;Kim, Seunghyun;Jeong, Yeuncheol;Demessinova, Aizat;Yushchenko, Volodymyr;Doikov, Dmytry;Gopka, Vira;Jeong, Kyung Sook;Rittipruk, Pakakaew
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.175-183
    • /
    • 2021
  • The dependencies of the chemical element abundances in stellar atmospheres with respect to solar abundances on the second ionization potentials of the same elements were investigated using the published stellar abundance patterns for 1,149 G and K giants in the Local Region of the Galaxy. The correlations between the relative abundances of chemical elements and their second ionization potentials were calculated for groups of stars with effective temperatures between 3,764 and 7,725 K. Correlations were identified for chemical elements with second ionization potentials of 12.5 eV to 20 eV and for elements with second ionization potentials higher than 20 eV. For the first group of elements, the correlation coefficients were positive for stars with effective temperatures lower than 5,300 K and negative for stars with effective temperatures from 5,300 K to 7,725 K. The results of this study and the comparison with earlier results for hotter stars confirm the variations in these correlations with the effective temperature. A possible explanation for the observed effects is the accretion of hydrogen and helium atoms from the interstellar medium.

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry

  • Abaye, Daniel A.;Aniagyei, Albert;Adedia, David;Nielsen, Birthe V.;Opoku, Francis
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.

Analysis of Textbook Contents and Chemistry Teachers' Cognition about Species of Strong Acid in Water (강산 수용액에서의 화학종에 대한 교과서 내용 및 화학 교사의 인식 분석)

  • Go, Hyung-Suk;Kim, Kyung-Eun;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.628-637
    • /
    • 2012
  • In this research, the textbook contents related to the ionization degree of strong acid in water were analyzed from 1945 year syllabus to chemistry II textbook in 2009 revised curriculum. Fifty chemistry teachers' cognition related to the species of strong acid in water, and the relationship between the degree of ionization was surveyed by a questionnaire and interviews. As results, most of the teachers thought the species of strong acid in water based on the degree of ionization represented on the chemistry II textbooks. They didn't recognize the conflict of the degree of ionization and definition of strong acid on the textbooks, and then they awakened the conflict, they could not solve the problem.