• 제목/요약/키워드: chemical ionization

Search Result 409, Processing Time 0.027 seconds

Determination and confirmation of the carbendazim residue in soybean sprout (콩나물중 살균제 carbendazim 잔류분의 정량 및 확인)

  • Kim, Young-Gook;Park, Jong-Tae;Hong, Suk-Soon
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.79-84
    • /
    • 1998
  • Tandem HPLC and atmospheric pressure chemical ionization(APcI) LC/MS method was used for the determination and confirmation of carbendazim residues in soybean sprout. Fluorescence(FL) detector was connected in tandem with the ultraviolet(UV) detector for dual detection of the carbendazim residue at the excitation and emission wavelength of 280 nm and 310 nm, respectively. The limit of detection for carbendazim was $0.1{\mu}g/kg$ sample. Recoveries of carbendazim from fortified soybean sprout at 0.5, 1.0 and 2.0 ppm were averaged 89.1%. Mass spectrometry using a APcI source confirmed the carbendazim residue in the soybean sprout sample. Fragmentation pattern on the APcI LC/MS spectrum of carbendazim was simpler than that from electron impact(EI) mass spectrum. Carbendazim produced 3 major ions including m/z 133, m/z 159 and m/z 191($M^{+}$). This method was sensitive enough to provide reliable and reproducible results for practical applications.

  • PDF

Entry into the Southeast Asian Energy Market from the Sales Promotion Viewpoint

  • Kwon, Ki-Tae;Lee, Woo-Sik;Kwon, Lee-Seung;Seong, Seung-Hwan;Kim, Young-Do;Kwon, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.15 no.10
    • /
    • pp.29-39
    • /
    • 2017
  • Purpose - The purpose of this study is to promote sales of the renewable energy industry and to advance into the Southeast Asian market. Research design, data, and methodology - This study is to develop a highly efficient food waste treatment system for Southeast Asian renewable energy industry. The radiation treatment method was applied for this purpose. Results - To investigate effects of ionization on removal of non-degradable organic matter, the results from gamma irradiation and co-digestion process was compared to those from a co-digestion process. Based on the BMP test results, food wastes were oxidized by hydroxyl radicals, and the specific methane yield was 366 mL CH4/g VS. Methane composition was 82%. A WAS/food wastes co-digestion was developed for the treated of non-degradable organic matter in food wastes. The average efficiency of non-degradable organic matter were 92.2% using the food waste co-digestion. Conclusions - Performance of gamma irradiation and co-digestion process was superior to that of a co-digestion process (10-20%). This implies that food wastes can be high efficient co-digested by the gamma irradiation. It is believed that it will be possible to enter the Southeast Asian energy industry as a strategic technology in the overseas energy recovery industry.

Identification and Quantitative Determination of Glucosinolates in Brassica napus cv. Hanakkori

  • Kim, Sun-Ju;Fujii, Kouei;Mohamed, Zaidul Islam Sarker;Kim, Hyun-Woong;Yamauchi, Hiroaki;Ishii, Gensho
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1097-1101
    • /
    • 2008
  • The objective of this study was to identify and quantify glucosinolates (GSLs) in Brassica napus cv. Hanakkori and its parents and to evaluate its potential bitter taste. 'Hanakkori' materials were cultivated with commercial chemical nutrients (20 kg/ha, N-P-K: 16-10-10) at the field. GSLs were isolated by means of extraction with 70%(v/v) boiling methanol (MeOH) followed by desulfation from those plants by reversed-phase high performance liquid chromatography (HPLC) and identified by electronic spray ionization-mass spectrometry (ESI-MS) analysis. In 'Hanakkori', 11 GSLs were identified as progoitrin, glucoraphanin, glucoalyssin, gluconapoleiferin, gluconapin, 1-methylpropyl, glucobrassicanapin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin. The total GSL contents were 109 and 36.1 mmol/kg dry weights (d.w.) for the seeds and edible parts, respectively. The major GSLs (>5 mmol/kg d.w.) in the seeds were progoitrin (78.8), gluconapin (10.7), and glucobrassicanapin (7.81), whereas they in the edible parts were progoitrin (16.1) and glucobrassicanapin (8.58). In addition, the bitter taste in the edible parts was presumably related with the presence of progoitrin (>45% to the total GSL).

Feasibility Study of Isotope Ratio Analysis of Individual Uranium-Plutonium Mixed Oxide Particles with SIMS and ICP-MS

  • Esaka, Fumitaka;Magara, Masaaki;Suzuki, Daisuke;Miyamoto, Yutaka;Lee, Chi-Gyu;Kimura, Takaumi
    • Mass Spectrometry Letters
    • /
    • v.2 no.4
    • /
    • pp.80-83
    • /
    • 2011
  • Isotope ratio analysis of nuclear materials in individual particles is of great importance for nuclear safeguards. Although secondary ion mass spectrometry (SIMS) and thermal ionization mass spectrometry (TIMS) are utilized for the analysis of individual uranium particles, few studies were conducted for the analysis of individual uranium-plutonium mixed oxide particles. In this study, we applied SIMS and inductively coupled plasma mass spectrometry (ICP-MS) to the isotope ratio analysis of individual U-Pu mixed oxide particles. In the analysis of individual U-Pu particles prepared from mixed solution of uranium and plutonium standard reference materials, accurate $^{235}U/^{238}U$, $^{240}Pu/^{239}Pu$ and $^{242}Pu/^{239}Pu$ isotope ratios were obtained with both methods. However, accurate analysis of $^{241}Pu/^{239}Pu$ isotope ratio was impossible, due to the interference of the $^{241}Am$ peak to the $^{241}Pu$ peak. In addition, it was indicated that the interference of the $^{238}UH$ peak to the $^{239}Pu$ peak has a possibility to prevent accurate analysis of plutonium isotope ratios. These problems would be avoided by a combination of ICP-MS and chemical separation of uranium, plutonium and americium in individual U-Pu particles.

Quantitative Assessment Strategy for Determining the Exposures to Volatile Organic Chemicals in Chemistry Laboratories (화학실험실의 휘발성유기화합물 노출에 대한 정량적 평가전략)

  • Byun, Hyaejeong;Ryu, Kyongnam;Yoon, Chungsik;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.11-24
    • /
    • 2011
  • Working in a research laboratory means exposure to a wide range of hazardous substances. Several studies indicated that laboratory workers, especially working with chemicals, might have an increased risk of certain cancers. However, exposure assessment data in laboratory settings are scarce. This study was performed to examine several approaches for quantitatively assessing the exposure levels to volatile organic compounds (VOCs) among workers in chemistry laboratories. The list of 10 target VOCs, including ethanol, acetone, 2-propanol, dichlormethane, tetrahydrofuran, benzene, toluene, n-hexane, ethyl acetate, chloroform, was determined through self-administered questionnaire for six chemistry research laboratories in a university, a government-funded research institute, or private labs. From September to December 2008, 84 air samples were collected (15 area samples, 27 personal time weighted samples, 42 personal task-basis short-term samples). Real time monitors with photo ionization detector were placed during the sampling periods. In this study, benzene was observed exceeding the action levels, although all the results were below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV). From the air sampling results, we concluded that (1) chemicals emitted during experiments could directly affect to neighbor office areas (2) chemical exposures in research laboratories showed a wide range of concentrations depending on research activities (3) area samples tended to underestimate the exposures relative to personal samples. Still, further investigation, is necessary for developing exposure assessment strategies specific to laboratories with unique exposure profiles.

Purification and Structural Analysis of Surfactin Produced by Endophytic Bacillus subtilis EBS05 and its Antagonistic Activity Against Rhizoctonia cerealis

  • Wen, Cai-Yi;Yin, Zhi-Gang;Wang, Kai-Xuan;Chen, Jian-Guang;Shen, Shun-Shan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.342-348
    • /
    • 2011
  • Bacillus subtilis EBS05, an endophytic bacteria strain isolated from a medicinal plant Cinnamomum camphor, can produce antagonistic compounds that effectively inhibit plant pathogenic fungi. The greenhouse experiments showed that wheat sharp eyespot disease (WSED) was reduced by 91.2%, 88.2% and 43.0% after the treatment with fermentation broth, bacteria-free filter and a fungicide fludioxonil, respectively. The culture broth of strain EBS05 can more effectively control WSED than can fludioxonil. The fermentation broth and bacteria-free filter ability to suppress WSED was not significantly different, suggesting that an active secreted substance played a major role in controlling WSED. Separation and purification of the active compounds was carried out by serial processes, including hydrochloric acid (pH 2.0) treatment, methanol extraction and Sephadex LH-20 column chromatography, silica gel column chromatography and reverse-phase high-pressure liquid chromatography (HPLC), respectively. The purified compounds, one of active peaks in the HPLC spectrum, were obtained from the collection. Analysis of the chemical structures by time-of-flight mass spectrometry (TOF-MS) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS) showed that the active substances produced by the endophytic bacteria EBS05 are mixture of the ${\beta}$-hydroxy-C12~C15-$Leu^7$ surfactin A isomers with 1035.65 Da, 1021.64 Da, 1007.63 Da and 993.65 Da molecular weights, respectively.

Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature (저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성)

  • Park, Ji Hun;Jeon, Bup Ju
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Bacillus amyloliquefaciens BAS23

  • Saechow, Sukanya;Thammasittirong, Anon;Kittakoop, Prasat;Prachya, Surasak;Thammasittirong, Sutticha Na-Ranong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1527-1535
    • /
    • 2018
  • Bacterial strain BAS23 was isolated from rice field soil and identified as Bacillus amyloliquefaciens. Based on dual culture method results, the bacterium BAS23 exhibited potent in vitro inhibitory activity on mycelial growth against a broad range of dirty panicle fungal pathogens of rice (Curvularia lunata, Fusarium semitectum and Helminthosporium oryzae). Cell-free culture of BAS23 displayed a significant effect on germ tube elongation and mycelial growth. The highest dry weight reduction (%) values of C. lunata, H. oryzae and F. semitectum were 92.7%, 75.7%, and 68.9%, respectively. Analysis of electrospray ionization-mass spectrometry (ESI-MS) and $^1H$ nuclear magnetic resonance (NMR) spectroscopy revealed that the lipopeptides were iturin A with a C14 side chain (C14 iturinic acid), and a C15 side chain (C15 iturinic acid), which were produced by BAS23 when it was cultured in nutrient broth (NB) for 72 h at $30^{\circ}C$. BAS23, the efficient antagonistic bacterium, also possessed in vitro multiple traits for plant growth promotion and improved rice seedling growth. The results indicated that BAS23 represents a useful option either for biocontrol or as a plant growth-promoting agent.

Cytotoxic Effect of Flavonoids from the Roots of Glycyrrhiza uralensis on Human Cancer Cell Lines (감초(Glycyrrhiza uralensis Fisch.)로부터 분리된 flavonoid의 인체 암세포에 대한 세포독성)

  • Park, Ji-Hae;Wu, Qian;Yoo, Ki-Hyun;Yong, Hye-Im;Cho, Sueng-Mock;Chung, In-Sik;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.67-70
    • /
    • 2011
  • The roots of Glycyrrhiza uralensis Fisch. were extracted with 30% aqueous ethanol (EtOH), and the concentrated extract was partitioned with n-hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. From the $CHCl_3$ fraction, four flavonoids were isolated through the repeated silica gel ($SiO_2$), octadecyl silica gel (ODS), and Sephadex LH-20 column chromatographies (c.c.). According to the results of spectroscopic data including nuclear magnetic resonance spectrometry (NMR), electron ionization mass spectrometry (EI/MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as glabrol (1), abyssinone II (2), glabridin (3), and isoliquiritigenin (4). The flavonoids were evaluated for cytotoxic effect against human cancer cell lines, HCT-116, HepG2, HeLa, SK-OV-3, SK-BR-3, MCF-7, and SK-MEL-5. Especially, glabrol (1) and glabridin (2) showed $IC_{50}$ values of lower than $25{\mu}M$.

Burnup Measurement of Irradiated Uranium Dioxide Fuel by Chemical Methods (화학적 방법에 의한 핵연료의 연소도 측정)

  • Kim, Jung-Suk;Han, Sun-Ho;Suh, Moo-Yul;Joe, Kih-Soo;Eom, Tae-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.277-286
    • /
    • 1989
  • Destructive methods are used for the turnup determination of an irradiated PWR fuel. One of the methods includes U, Pu, Nd-148 and Nd-(145+146) determination by an isotope dilution mass spectrometry using triple spikes (U-233, Pu-242 and Nd-150). The method involves two sequential ion exchange resin separation procedures. Pu is eluted from the first anion exchange resin column (Dowex AG 1$\times$8) with 12 M HCl-0.1 M HI mixed solution, followed by U elution with 0.1 M HCl. Nd is isolated from other fission products on the second anion exchange resin column (Dowex AG 1$\times$4) with a nitric acid-methanol eluent. Each fraction is analysed by thermal ionization mass spectrometry. The difference between Nd-148 and Nd-(145+146) method is found with an average 2.07%. The results are compared with those by the heavy element method using U and Pu isotopes and by the destructive y-spectrometric measurement of Cs-137. The dependences of isotope composition of U and Pu on burn-up, and correlation between those isotopes are illustrated graphically.

  • PDF