• Title/Summary/Keyword: chemical ionization

Search Result 409, Processing Time 0.044 seconds

Application of Clustering Methods for Interpretation of Petroleum Spectra from Negative-Mode ESI FT-ICR MS

  • Yeo, In-Joon;Lee, Jae-Won;Kim, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3151-3155
    • /
    • 2010
  • This study was performed to develop analytical methods to better understand the properties and reactivity of petroleum, which is a highly complex organic mixture, using high-resolution mass spectrometry and statistical analysis. Ten crude oil samples were analyzed using negative-mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Clustering methods, including principle component analysis (PCA), hierarchical clustering analysis (HCA), and k-means clustering, were used to comparatively interpret the spectra. All the methods were consistent and showed that oxygen and sulfur-containing heteroatom species played important roles in clustering samples or peaks. The oxygen-containing samples had higher acidity than the other samples, and the clustering results were linked to properties of the crude oils. This study demonstrated that clustering methods provide a simple and effective way to interpret complex petroleomic data.

Selective Extraction and Quantification of Glutathione using Maleimide-Presenting Gold Nanoparticles

  • Oh, Hongseok;Lee, Jeongwook;Yeo, Woon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3047-3051
    • /
    • 2014
  • In this paper, we describe a new method for the selective extraction and quantification of glutathione (GSH) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and maleimide-presenting gold nanoparticles (Mal-AuNPs). Our strategy utilizes the Michael addition to selectively extract GSH, from chosen samples, onto the maleimide of Mal-AuNPs. After the extraction step, the GSH bound to the AuNPs was analyzed by MALDI-TOF MS in the presence of an internal standard which was prepared by reacting Mal-AuNPs with isotope-labeled GSH ($GSH^*$). The $GSH^*$ has the same structure as GSH but a higher molecular weight, and therefore, enables absolute quantification of GSH by comparing the mass signal intensities of the GSH- and $GSH^*$-conjugated alkanethiols. Our strategy was verified by analyzing GSH-spiked fetal bovine serum and NIH 3T3 cells.

Decarbonylation of the 2-Hydroxypyridine Radical Cation: A Computational Study

  • Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3021-3024
    • /
    • 2014
  • The potential energy surface (PES) for the dissociation of the 2-hydroxypyridine (2-HP) radical cation was determined from G3//B3LYP calculations, including the loss of CO, HCN, and HNC. The formation of the 1H-pyrrole radical cation by decarbonylation through a more stable tautomer, the 2-pyridone (2-PY) radical cation, was the most favorable dissociation pathway. Kinetic analysis by the Rice-Ramsperger-Kassel-Marcus model calculations was carried out based on the obtained PES. It is proposed that the dissociation occurs after a rapid tautomerization to 2-$PY^{{\cdot}+}$, and that most of the ions generated by ionization of 2-HP have the structure of 2-$PY^{{\cdot}+}$ at equilibrium above the tautomerization barrier.

Isolation of the Arabidopsis Phosphoproteome Using a Biotin-tagging Approach

  • Kwon, Sun Jae;Choi, Eun Young;Seo, Jong Bok;Park, Ohkmae K.
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2007
  • Protein phosphorylation plays a key role in signal transduction in cells. Since phosphoproteins are present in low abundance, enrichment methods are required for their purification and analysis. Chemical derivatization strategies have been devised for enriching phosphoproteins and phosphopeptides. In this report, we employed a strategy that replaces the phosphate moieties on serine and threonine residues with a biotin-containing tag via a series of chemical reactions. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO)-depleted protein extracts prepared from Arabidopsis seedlings were chemically modified for 'biotin-tagging'. The biotinylated (previously phosphorylated) proteins were then selectively isolated by avidin-biotin affinity chromatography, followed by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). This led to the identification of 31 protein spots, representing 18 different proteins, which are implicated in a variety of cellular processes. Despite its current technical limitations, with further improvements in tools and techniques this strategy may be developed into a useful approach.

The Matrix Effect of Biological Concomitant Element on the Signal Intensity of Ge, As, And Se in Inductively Coupled Plasma/Mass Spectrometry

  • Park, Kyung-Su;Kim, Sun-Tae;Kim, Young-Man;Kim, Yun-je;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1389-1393
    • /
    • 2002
  • The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 ㎍/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S, and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression. We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen.

Effect of Dihydroxybenzoic Acid Isomers on the Analysis of Polyethylene Glycols in MALDI-MS

  • Lee, Ae-Ra;Yang, Hyo-Jik;Kim, Yang-Sun;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1127-1130
    • /
    • 2009
  • The effects of different dihydroxybenzoic acid (DHB) isomers, when used as matrix materials in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), were investigated in analyses of polyethylene glycol (PEG) polymers. PEG polymers ranging from 400 to 8,000 Da were prepared in different DHB isomer matrices using solvent-based and solvent-free methods. PEG samples were detected only in matrices of 2,3-DHB, 2,5-DHB, and 2,6-DHB while the most intense peaks were observed using 2,6-DHB in both solvent-free and solvent-based preparations.

Photodissociation of Nitrous Oxide by Slice Ion Imaging: The Stagnation Pressure Dependence

  • Cheong, Nu-Ri;Park, Hye-Sun;Nam, Sang-Hwan;Shin, Seung-Keun;Cho, Soo-Gyeong;Lee, Hai-Whang;Song, Jae-Kyu;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2661-2664
    • /
    • 2009
  • Photodissociation of nitrous oxide near 203 nm has been studied by a combination of high resolution slice ion imaging technique and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy of $N_2(X^1{{\Sigma}_g}^+)$ via the (a″$^1{{\Sigma}_g}^+$) state. We have measured the recoil velocity and angular distributions of $N_2$ fragments by ion images of the state-resolved photofragments. The $N_2$ fragments were highly rotationally excited and the NN-O bond dissociation energy was determined to be 3.635 eV. Also, we investigated the photofragment images from the photodissociation of $N_2O$ clusters with various stagnation pressures.

The Reactivity of Thiopyrylium Compound. Reduction of Thiopyrylium Cation by Alkali Metals-Evidence of Thiabenzene Radical

  • Joo, Wan-Chul;Kim, Chung-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.98-101
    • /
    • 1980
  • For the first time we have synthesized thiabenzene radical by the reaction of thiopyrylium cation with alkali metals. As might be expected for a free radical, ESR-spectrum of 2,4,6-triphenylthiabenzene radical shows the single signal with g-value of 2.0045. The proton signal of 2,4,6-triphenylthiabenzene radical in nmr spectrum shifts to the higher field than that of 2,4,6-triphenylthiopyrylium cation by ca. 0.5 ppm. From the UV-spectrum of thiabenzene radical the presence of 6${\pi}$ non-benzenoid aromatic system was observed as in the case of thiopyrylium cation. The reactivity of alkali metals with thiopyrylium cation increases in the order of decreasing ionization energy, Li

Relativistic Effects on Orbital Energies in AgH and AuH ; A Clue to the Origin of Relativistic Correlation Effects

  • Lee, Yoon-Sup;McLean, A. D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 1987
  • Oribtal energies for AuH and AgH are calculated by an all-electron relativistic self-consistent-field method using Slater type basis functions. Major relativistic effects for AgH are spin-orbit splittings and those for AuH are large shifts in orbital energies in addition to spin-orbit splittings. Relativistic effects on orbital energies in AgH and AuH imply that changes in correlation energies for relativistic calculations of AuH will be significantly larger than those of AgH, providing partial explanation for the large discrepencies in equilibrium bond length and the dissociation energy between experiments and theoretical estimates for AuH. Large relativistic effects on orbital energies indicate that relativistic contributions should be included for the correct interpretation of ionization potentials for these molecules. Relativistic effects are also evident in dipole moments for these molecules.

Excitation Temperature and Electron Number Density Measured for End-On-View Indectively Coupled Plasma Discharge

  • Nam, Sang Ho;Kim, Yeong Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.827-832
    • /
    • 2001
  • The excitation temperature and electron number density have been measured for end-on-view ICP discharge. In this work, end-on-view ICP-AES equipped with the newly developed “optical plasma interface (OPI)” was used to eliminate or remove the neg ative effects caused by end-on-plasma source. The axial excitation temperature was measured using analyte (Fe I) emission line data obtained with end-on-view ICP-AES. The axial electron number density was calculated by Saha-Eggert ionization equilibrium theory. In the present study, the effects of forward power, nebulizer gas flow rate and the presence of Na on the excitation temperature and electron number density have been investigated. For sample introduction, two kinds of nebulizers (pneumatic and ultrasonic nebulizer) were utilized.