• 제목/요약/키워드: chemical hydrogen storage

Search Result 209, Processing Time 0.022 seconds

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Characteristics of CO2 Conversion Using Cobalt Ferrite Powders (코발트계 페라이트 분말을 이용한 이산화탄소 전환특성)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1008-1014
    • /
    • 2012
  • The amount of domestic carbon dioxide emissions is more than 600 million tons/year. The emitted $CO_2$ should be captured and stored, however, suitable storage sites have not been found yet. A lot of researches on the conversion of captured carbon dioxide to useful carbon source have been conducted. The purpose of this study is to convert stable carbon dioxide to useful resources using less energy. For this purpose reducing gas and metallic oxide (activator) are required. Hydrogen was used as reducing gas and cobalt ferrite was used as activator. Considering that activator has different physical properties depending on synthesis methods, activator was prepared by hydrothermal synthesis and solid method. Decomposition characteristics of carbon dioxide were investigated using synthesized powders. Temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA) device were used to observe the decomposition characteristics of carbon dioxide. Activator prepared by solid method with 5 and 10 wt% CoO content showed an excellent performance. In TGA experiments with samples prepared by the solid method, reduction by hydrogen was 29.0 wt% and oxidation by $CO_2$ was highest in 27.5 wt%. 95% of adsorbed $CO_2$ was decomposed with excellent oxidation-reduction behaviors.

Investigation on Formation Behaviors of Synthesized Natural Gas Hydrates (합성 천연가스의 하이드레이트 형성 거동 연구)

  • Lee, Jong-Won;Lee, Ju-Dong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.890-893
    • /
    • 2012
  • Gas hydrates are solid crystal structures formed by enclathration of gaseous guest species into 3-dimensional lattice structure of hydrogen-bonded water molecules. These compounds can be potentially used as an energy storage/transportation medium because they can hold a large amount of gas in a small volume of the solid phase. In addition, huge amount of natural gas, buried in seabeds or permafrost region in the form of the solid hydrate, is regarded as a future energy source. In this study, synthesized natural gas, whose composition is 90.0 mol% of methane, 7.0 mol% of ethane, and 3.0 mol% of propane, was used to identify formation behaviors of natural gas hydrates for the purpose of applying the gas hydrate to a storage/transportation medium of natural gas. According to the experimental results obtained by means of the solid-state NMR and high-resolution powder XRD methods, it is found that formed natural gas hydrates have crystal structure of the structure-II hydrate, and that methane occupies both small and large cages, while the others only occupy large ones. In addition, both the NMR spectroscopy and the gas chromatograph showed that there exists preferential occupation among the natural gas components during the hydrate formation. Compositional changes after the hydrate formation revealed that the preferential occupation is in order of propane, ethane, and methane (propane is the most preferential guest species when forming natural gas hydrates).

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

Effects of Salts on Rheological Behaviour of Salvia Hydrogels

  • Yudianti, Rike;Karina, Myrtha;Sakamoto, Masahiro;Azuma, Jun-ichi
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.332-338
    • /
    • 2009
  • Rheological behavior of natural hydrogel produced from seeds of three Salvia spp. (S. miltiorrhiza (SM), S. sclarea (SS), S. viridis (SV)) was investigated by using a Rheometer equipped with a cone and plate geometry measuring system under never-dried condition. Different chemical contents of such hydrogels give significant effects on their rheological properties. Because of incomplete penetration of water inside the hydrogels after drying before-dried hydrogels were used for rheological analysis. To know molecular interactions which predominated in the gel formation, some constituents were externally added to the 1.0% (w/w) hydrogel. Addition of urea to disrupt hydrogen bonds reduced 3.4-67% viscosity of the untreated hydrogels and changed viscoelastic properties from gel to liquid-like behavior. Neutral salts added to the hydrogel solution at 0.1 M also lowered the viscosity in a manner related with increase in size of cations and temperature. Changing from gel state to liquid-like state was also easily confirmed by oscillation measurement (storage, G', and loss, G", modulii) typically observed in the cases of potassium sulfate and potassium thiocyanate. Influence of pH variation on the viscosity explained that weak alkaline condition (pH 8-9) creates a higher resistance to flow due to increasingly electrostatic repulsions between negative charges ($COO^-$) Importance of calcium bridges was also demonstrated by recovery of viscosity of the hydrogels by addition of calcium after acidification. The summarized results indicate that electrostatic repulsion is a major contributor for production of hydrogel structure.

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor (마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구)

  • Jung, Ki Moon;Choi, Seok Hyun;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.381-387
    • /
    • 2017
  • Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

Mechanistic insights of metal acetylacetonate-aided dehydrocoupling of liquid-state ammonia borane NH3BH3

  • Pereza, Manon;Mieleb, Philippe;Demirci, Umit B.
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.177-187
    • /
    • 2016
  • Ammonia borane $NH_3BH_3$ solubilized in organic solvent is a potential liquid-state chemical hydrogen storage material. In this study, metal acetylacetonates like $Fe(O_2C_5H_7)_3$, $Co(O_2C_5H_7)_2$, $Ni(O_2C_5H_7)_2$, $Pd(O_2C_5H_7)_2$, $Pt(O_2C_5H_7)_2$ and $Ru(O_2C_5H_7)_3$ are considered for assisting dehydrocoupling of ammonia borane in diglyme (0.135 M) at $50^{\circ}C$. The molar ratio between ammonia borane and metal acetylacetonate is fixed at 100. A protocol for the separation of the soluble and insoluble fractions present in the slurry is proposed; it consists in using acetonitrile to make the precipitation of metal-based compounds easier and to solubilize boron-based intermediates/products. The nature of the metal does not affect the dehydrocoupling mechanisms, the $^{11}B\{^1H\}$ NMR spectra showing the formation of the same reaction intermediates. The aforementioned metal acetylacetonates do mainly have effect on the kinetics of dehydrocoupling. Dehydrocoupling takes place heterogeneously and dehydrogenation of ammonia borane in these conditions leads to the formation of polyborazylene via intermediates like e.g., B-(cyclodiborazanyl) amine-borane and borazine. Our main results are reported and discussed herein.

Supported nickel catalysts for the decomposition of hydrazine borane N2H4BH3

  • Cakanyildirim, Cetin;Demirci, Umit B.;Xu, Qiang;Miele, Philippe
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • In this work, we present the catalytic dehydrogenation of hydrazine borane $N_2H_4BH_3$ (HB) using supported nickel catalysts at $50^{\circ}C$. In the presence of monometallic nickel catalysts, the dehydrogenation of HB is a one-step reaction consisting of the hydrolysis of the $BH_3$ group only. The challenge is to activate nickel to make it reactive towards the $N_2H_4$ moiety of HB. A set of 52 catalysts were prepared by using 2 supports ($Al_2O_3$ and $TiO_2$), 5 nickel precursors and 3 preparation methods. For the first time, we show that the supported nickel catalysts are able to dehydrogenate the $NH_3$ moiety of HB. In our experimental conditions, the best results were obtained with 20 wt% Ni-$Al_2O_3$ and 20 wt% Ni-$TiO_2$, with ca. 190 mL $H_2+N_2$ generated over a total theoretical volume of 283 mL, suggesting $H_2$ selectivity of 37 and 32%, respectively. Both catalysts were then characterized by EDX, XPS, and XRD. Our achievement is the first step forward and opens new perspectives for developing catalysts for the total dehydrogenation of HB.