• Title/Summary/Keyword: chemical heat-storage material

Search Result 37, Processing Time 0.023 seconds

Prevention of Discoloration and Storage Stability in Canned Ark Shell (새고막 통조림 변색방지 및 저장중 품질변화)

  • 배태진;김귀식
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 1998
  • Ark shell was known as shellfish that had hemoglobin as blood pigment and the action of mecidine, was consumed the great part of it as raw material, though it was produced about 13,000 M/T per year. Ark shell was processed the infinitesimal quantity as conned product, bout canned ark shell had problem that occurrenced discoloration after heat treatment during processing and storage. This discoloration mechanism during processing and storage was not cleared. This study was carried out to understand characteristics of the hemoglobin as blood pigment and carotenoid as meat pigment in ark shell and management of proper processing conditions for prevention of oxidation and discoloration by thermal treatment. When treated by digestion of 0.1% BHA, 0.1% Tenox-II, 0.5% Na2EDTA, 0.05% NDGA and 3% salt soln., 0.1% BHA solution was most suitable for stability of carotenoid that the retention ratio of carotenoids were 63.1% after heating to 116$^{\circ}C$ for 120 minutes. In preparation of canned ark shell and storage at 37$\pm$1$^{\circ}C$ for 60 days, the chemical composition, pH and salinity ere stable. And contents of total carotenoid were decreased slightly from 0.83mg% to 0.727mg%. The viable cell count were 6.92$\times$103 cfu/ml at raw ark shell, after processed and storage were not detected. The predominant amino acids in the raw ark shell were glutamic acid(19.7%), arginine(16.0%), glycine(12.6%), alanine(12.2%) and aspartic acid(7.6%). When 60 days stored, the contents of amino acid were stable. And the predominant nuclotide and their related compounds in the raw ark shell were hypoxanthine(2.14$\mu$mol/g), IMP(1.94$\mu$mol/g) and ATP(0.87$\mu$mol/g), and storage at 37$\pm$1$^{\circ}C$ for 60 days, the quantity order were same as raw material.

  • PDF

A Preparation and Characteristics of Functional rchitecture Materials Made frm Non-metallic Minerals (비금속광물 분체의 기능성 건축소재화 특성)

  • 김병곤;최상근;박종력;전호석
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.811-817
    • /
    • 2003
  • Recently, application fields of non-metallic minerals by utilizing their structure properties are broadening. Especially, layered minerals have not only excellent shielding or covering ability but also absorbing and storing characteristics of chemical elements between a layers. We considered about the above mentioned characteristics and added functional substances onto their surfaces for the preparation of new environmentally friendly functional materials. In this study, natural graphite and sericite were mainly used to produce for the new environmentally friendly functional building materials. Graphite surfaces were modified with a surfactant (Alkyl Benzyle Demethyle Ammonium Chloride) for anti-bacillus and penicillium. Surface modification mechanism are that primary adsorption by differential zeta potential between graphite and ABDM and secondary adsorption by interaction between surfactant chains take place. Surfactant layers were fully formed and it was expected up to 99.7% up the efficiency of anti-bacillus and penicillium. Also the prepared functional samples have a effect to improve a various efficiency such as electromagnetic wave shield(up to 95%), deodorization(up to 80%), heat storage(5%) etc.

Solar CO2-Reforming of Methane Using a Double-Layer Absorber (더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Kim, Dong-Yeon;Lee, Jin-Gyu;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.267-273
    • /
    • 2012
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber-the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam-was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

Solar CO2-Reforming of Methane Using a Double-Layer Absorber (더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Kim, Dong-Yeon;Shin, Il-Yoong;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.80-86
    • /
    • 2011
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber - the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam - was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

Effect of the Moisture Content and Pellet Mill Type on the Physical and Chemical Characteristics of Italian ryegrass Pellet (펠렛밀과 수분함량이 이탈리안 라이그라스 펠렛의 물리적 특성 및 화학적 성상에 미치는 영향)

  • Moon, Byeong Heoun;Shin, Jong Seo;Park, Hyung Soo;Park, Byeong Ki;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • The objective of this study was to determine the effect of the moisture content and pellet mill type on the physical and chemical characteristics of Italian ryegrass (IRG) pellet. Moisture content of raw material significantly (p<0.05) affected IRG pellet formation. Moisture content at 25% was the best condition for IRG pellet formation in terms of shape, power load and temperature changes. The hardness of pellet was decreased when moisture content was increase. However, the hardness of pellet was not affected by pellet mill type. Moisture content at 30% dramatically (p<0.05) decreased the durability compared to moisture content at 25%. Dry matter content of IRG pellet was increased (p<0.05) after pelleting. Total count of microorganism was decreased in pellet due to pressure heat and moisture losses during the pelleting process. These results indicated that the proper moisture content of Italian ryegrass pelleting would be at 25%. In addition, Roll & flat die type would be more suitable than Ring die and Die & flat die type in IRG pelleting. Pelleting works would be beneficial for improving forage quality and long storage.

A Study on the H3PO4-Treated Soft Carbon as Anode Materials for Lithium Ion Batteries (리튬이온전지용 소프트카본 음극 소재의 인산 처리에 대한 연구)

  • Jo, Yong-Nam;Lee, En-Young;Park, Min-Sik;Hong, Ki-Joo;Lee, Sang-Ick;Jeong, Hu-Young;Lee, Zonghoon;Oh, Seung M.;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.207-215
    • /
    • 2012
  • Soft carbons are prepared by heat-treatment of cokes with different amounts of phosphoric acid (2, 4.5, and 10 wt% vs. cokes) at $900^{\circ}C$ to be used as anode materials for lithium ion batteries. From electrochemical measurements combined with structural analyses, we confirm that abundant nano-pores are existed in the microstructure of soft carbons prepared with the phosphoric acid, which are responsible for further lithium ion storage. Significant increase in reversible capacity of soft carbon is attained in proportion to added amount of the phosphoric acid. We also demonstrate the effect of structural modification with phosphoric acid on electrochemical performance of soft carbon to elucidate the origin of additional capacity.

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.