• 제목/요약/키워드: chemical heat conversion

검색결과 138건 처리시간 0.026초

Synthesis and Characterization of Co-Surfactant Templated Mesoporous Materials with Enhanced Hydrothermal Stability

  • Kim Geon-Joong;Kim Hyun-Seok;Ko Yoon Soo;Kwon Yong Ku
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.499-505
    • /
    • 2005
  • Ordered mesoporous materials with a hydrothermally-stable, protozeolitic framework were prepared by exploring the direct conversion of inorganic species based on co-surfactant templating systems. To confer hydrothermal stability on the mesoporous aterials, the organic-inorganic hybrids were heat-treated in strongly basic media. Co-surfactant templating systems of cetyltrimethylammonium bromide [$C_{16}H_{13}(CH_{3})_{3}$NBr, CTAB] with 1,3,5-trim­ethylbenzene (TMB) or a nonionic block copolymer of poly(ethylene oxide )-b-poly(propylene oxide )-b-poly(ethyl­ene oxide) ($EO_{20}PO_{70}EO_{20}$) were employed to improve the hydrothermal stability of the organic-inorganic self-assembly during the solid rearrangement process of the inorganic species. The mesoscopic ordering of the pore structure and geometry was identified by X-ray diffraction, small angle neutron scattering and electron microscopy.

냉간시동시 자동차용 저온활성촉매의 성능 향상을 위한 수치적 설계 (Numerical Design of Light-off Auto-Catalyst for Reducing Cold-Start Emissions)

  • 정수진;김우승
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1264-1276
    • /
    • 2000
  • Light-off catalyst has been used for minimization of cold-start emissions. Improved cold-start performance of light-off catalyst needs the optimal design in terms of flow distribution, geometric surface area, precious metal loading, cell density and space velocity. In this study, these influential factors are numerically investigated using integrated numerical technique by considering not only 3-D fluid flow but also heat and mass transfer with chemical reactions. The present results indicate that uneven catalyst loading of depositing high active catalyst at upstream of monolith is beneficial during warm-up period but its effect is severely deteriorated when the space velocity is above 100,000 $hr^{-1}$ To maximize light-off performance, this study suggests that 1) a light-off catalyst be designed double substrate type; 2) the substrate with high GSA and high PM loading at face be placed at the front monolith; and 3) the cell density of the rear monolith be lower to reduce the pressure drop.

TiOCl2 수용액의 균일침전반응에 의한 나노크기의 브루카이트상 TiO2 분말제조 (Synthesis of Nanosized Brookite-type Titanium Dioxide Powder from aqueous TiOCl2 Solution by homogeneous Precipitation Reaction)

  • 이정훈;양영석
    • 한국재료학회지
    • /
    • 제12권12호
    • /
    • pp.947-954
    • /
    • 2002
  • HCl concentration and reaction time are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiOCl_2$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these two factors. As reaction rate increases with increase of reaction temperature, the reaction time, at which maximum volumetric proportion of brookite phase in $TiO_2$ particles was obtained, was reduced. The brookite was transformed directly to rutile phase with only increase of reaction time. And precipitation was delayed with increase of HCl concentration because the amount of $H_2$O, which is necessary source of oxygen for conversion of $Ti^{+4}$ to $TiO_2$, was relatively reduced with increase of that. Brookite in the mixture phase powder was finally transformed to rutile phase via anatase through heat-treatment.

Ginsenoside Rg3의 함량증가를 위한 변환 기술 (Transformation Techniques for the Large Scale Production of Ginsenoside Rg3)

  • 남기열;최재을;박종대
    • 한국약용작물학회지
    • /
    • 제21권5호
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Influencing Parameters on Supercritical Water Reactor Design for Phenol Oxidation

  • Akbari, Maryam;Nazaripour, Morteza;Bazargan, Alireza;Bazargan, Majid
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.85-93
    • /
    • 2021
  • For accurate and reliable process design for phenol oxidation in a plug flow reactor with supercritical water, modeling can be very insightful. Here, the velocity and density distribution along the reactor have been predicted by a numerical model and variations of temperature and phenol mass fraction are calculated under various flow conditions. The numerical model shows that as we proceed along the length of the reactor the temperature falls from above 430 ℃ to approximately 380 ℃. This is because the generated heat from the exothermic reaction is less that the amount lost through the walls of the reactor. Also, along the length, the linear velocity falls to less than one-third of the initial value while the density more than doubles. This is due to the fall in temperature which results in higher density which in turn demands a lower velocity to satisfy the continuity equation. Having a higher oxygen concentration at the reactor inlet leads to much faster phenol destruction; this leads to lower capital costs (shorter reactor will be required); however, the operational expenditures will increase for supplying the needed oxygen. The phenol destruction depends heavily on the kinetic parameters and can be as high as 99.9%. Using different kinetic parameters is shown to significantly influence the predicted distributions inside the reactor and final phenol conversion. These results demonstrate the importance of selecting kinetic parameters carefully particularly when these predictions are used for reactor design.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • 제9권4호
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

P-25 광촉매의 열처리 온도에 따른 염료감응태양전지의 효율특성 (Efficiency Characteristics of Dye-Sensitized Solar Cells with Heat Treatment Temperature of P-25 Photocatalyst)

  • 박기민;김태영;김정국;조성용
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.649-653
    • /
    • 2010
  • 본 연구에서는 열처리 온도(Pure: non-thermally treated, 450, 650, $850^{\circ}C$)에 따른 P-25 광촉매의 특성 변화를 조사하였으며, 이 광촉매를 이용하여 염료 감응형 태양전지를 제조하고 그 효율 특성을 연구하였다. P-25 광촉매의 열처리 온도에 따른 Methylene blue의 광분해 정도는, Pure와 $450{\sim}650^{\circ}C$에서 소성된 광촉매들의 광분해도는 3시간 이후 약 97~99%로 비슷한 결과를 보였고, $850^{\circ}C$에서 소성된 광촉매는 약 46%로 다른 광촉매에 비해 낮은 값을 보였다. 비열처리(Pure) 광촉매와 450, 650, $850^{\circ}C$에서 열처리한 광촉매를 이용하여 제조한 염료감응형 태양전지의 에너지 변환효율은 각각 6.9, 6.5, 5.8 그리고 5.6%로 각각 나타났다.

MMA/IPMI/Styrene 삼원공중합 공정연구 (A Study on the Process in MMA/IPMI/Styrene Terpolymerization)

  • 박종경;윤성철;진정일;이창진
    • 폴리머
    • /
    • 제30권4호
    • /
    • pp.326-331
    • /
    • 2006
  • 대표적인 고내열 POF(plastic optical fiber)의 재료로 사용되는 MMA(methyl methacrylate)/IPMI(N-isopropyl maleimide) 공중합체는 단량체 간의 반응성이 매우 차이가 나므로 $(r_1/r_2=1.72:0.17)$, 중합체의 조성분포가 불균일하게 되어 물성을 저하시키는 원인으로 작용한다. 본 논문에서는 MMA/IPMI 공중합에 스티렌을 도입하여, IPMI의 반응성을 증가시켜 중합체의 조성 분포를 좀 더 균일하게 개선하였으며, 전환율도 약 $1.5{\sim}2$배 정도로 증가시키는 결과를 얻을 수 있었다. 합성된 MMA/IPMI/St 삼원공중합체의 경우 굴절률은 MMA/IPMI 공중합체보다 증가하였으며 이는 주로 스티렌의 함량과 관련되는 것으로 나타났다.

알파 리포산의 개환 및 중합 (Ring Opening and Polymerization of Alpha-Lipoic Acid)

  • 박철호;김애란;윤혜리;이종휘
    • 폴리머
    • /
    • 제30권4호
    • /
    • pp.357-361
    • /
    • 2006
  • 생체 내에서 생성되는 알파 리포산은 산화방지, 혈당량 조절뿐만 아니라 식욕 억제, 비만 억제 효과 등을 가지고 있다. 약물로도 이용되고 있는 이 물질은 두 개의 황을 함유하고 있는 오각형 고리구조를 가지고 있어, 열과 자외선에 의해서 쉽게 개환되고 나아가 고분자로 중합될 수 있어서 약물로서 투여했을 경우 생체 이용률이 낮아지는 문제가 보고되어 있다. 본 연구는 개환에 따른 고분자화를 위한 다양한 조건을 조사하였다. 리포산은 녹는점이 지나야만 개환이 발생하였지만 그 이상의 온도에서는 온도의존성이 없었다. $70^{\circ}C$에서 개환율은 시간에 비례하였고 농도에 반비례하였다. 1시간 동안, $70^{\circ}C$ 아세트산에서 자외선과 함께 개환된 경우 개환율은 가장 높은 70% 였다. 이렇게 개환된 알파 리포산들은 대부분이 이황 고분자로 변했고, 개환율이 커질수록 고분자의 분자량 도 증가하였다.

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.