• Title/Summary/Keyword: chemical heat conversion

Search Result 138, Processing Time 0.039 seconds

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Estimation of Heat Transfer Characteristics for a Solar Chemical Reactor (고온 태양열 화학반응기 열전달 성능 평가)

  • Kang, Kyung-Mun;Lee, Ju-Han;Cho, Hyun-Suk;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2221-2226
    • /
    • 2008
  • The objective of this paper is to describe the experimental and numerical investigation of the analysis of the heat transfer in a solar chemical reactor. These are compared about methane steam reforming process in the solar chemical reactor which was a volumetric absorber consisting of honeycomb and a multilayered catalyst supports. With this high operating temperature, convective heat loss, thermal fracture are important features for designing SCR. In order to estimate the system performance and to design the actual solar reactor with various conditions, CFD analysis was used in this study. The nickel oxide porous metal is inserted inside the solar chemical reactor to increase the conversion rate of the reforming reaction. Simulation has been carried out based on the experimental data. According to the simulation results, the optimum methane-steam mole ratio and thickness and numbers of catalyst supports were obtained.

  • PDF

Comparison of Pretreatment Method for the Enhancement of CO2 Mineralogied Sequestration using by Serpentine (이산화탄소 광물고정화 효율 증진을 위한 사문석의 전처리 방법의 비교)

  • Jang, Na-Hyung;Park, Sung-Kwon;Shim, Hyun-Min;Kim, Hyung-Taek
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • Since the reaction of mineral fixation proceeds with a very slow rate, the pretreatment method to increases the rate of carbonation reaction should be required. To increase the reactivity of serpentine with $CO_{2}$, two pretreatment methods are performed in this study. The heat treatment is done at $630^{\circ}C$. A heat-treated serpentine shows that the strength of -OH has a lower peak in FT-IR spectrum. Chemical pretreatment is the method of leaching of magnesium from serpentine using sulfuric acid at $75^{\circ}C$ for 1 h. Because the protonation of the oxygen atoms polarizes and weakens the Mg-O-Si bond, the removal of magnesium atoms from the crystal lattice was facilitated. After performing the pre-treatment of serpentine, $CO_{2}$ fixation experiments are performed with treated serpentine in the batch reactor. Heat-treated serpentine is converted into 43% magnesite conversion, whereas untreated serpentine has 27% of magnesite conversion. Although the results of the heat-pretreatment are encouraging, this method is prohibited due to excessive energy consumption. Furthermore chemical pretreatment serpentine routes have been proposed in an effort to avoid the cost prohibitive heat pretreatment, in which the carbonation reaction was conducted at 45 atm and $25^{\circ}C$. Chemical-treated serpentine, in particularly is corresponded to a conversion of 42% of magnesite compared to 24% for the un-treated serpentine.

A Study on Heat and Mass Balance in a Coal Gasifier (석탄 가스화기 열 및 물질정산에 관한 연구)

  • Kim, Bong-Keun;Yoo, Jeong-Seok;Kim, You-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.424-428
    • /
    • 2007
  • In the current most tool using heat and mass balance in a coal gasifier is dependent on commercial code such as STANJAN, CHEMKIN. However, in order to keep the self-reliance technology, it is necessary to develop the original design tool available for comprehension and analysis on the spot. So in this study, its own heat and mass balance program is developed on the assumption that the process in a coal gasifier is adiabatic and quasi-equilibrium. The mass balance is calculated by using the chemical equilibrium principle. Also the heat and mass balance according to main operating factors such as temperature, pressure and O2/Coal ratio, was carried in this tool. This heat and mass balance was verified on the basis of the results simulated in STANJAN, commercial codes using similar logic.

  • PDF

DEVELOPMENT OF A SUPERCRITICAL CO2 BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR

  • Cha, Jae-Eun;Lee, Tae-Ho;Eoh, Jae-Hyuk;Seong, Sung-Hwan;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan;Kim, Tae-Woo;Suh, Kyun-Yul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1025-1044
    • /
    • 2009
  • Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.

Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine (디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

Preparation of High Molecular Weight Poly(methyl methacrylate) with High Yield by Room Temperature Suspension Polymerization of Methyl Methacrylate

  • Lyoo, Won-Seok;Noh, Seok-Kyun;Yeum, Jeong-Hyun;Kang, Gu-Chan;Ghim, Han-Do;Lee, Jinwon;Ji, Byung-Chul
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • To obtain high molecular weight (HMW) poly(methyl methacrylate) (PMMA) with high conversion, methyl methacrylate (MMA) was polymerized in suspension using a room temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior of MMA and the molecular parameters of PMMA were investigated. On the whole, the experimental results well corresponded to the theoretically predicted tendencies. These effects could be explained by a kinetic order of ADMVN concentration calculated by an initial rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 25℃ by adopting ADMVN proved to be successful in obtaining PMMA of HMW (number-average degree of polymerization (P/sub n/): 30,900-36,100) and of high yield (ultimate conversion of MMA into PMMA: 83-93 %) with diminishing heat generated during polymerization. The P/sub n/ and lightness were higher and polydispersity index was lower with PMMA polymerized at lower temperatures.

Theoretical Study for Vehicle Applications of Electrically Heated Catalyst(EHC) (Electrically Heated Catalyst(EHC)의 실차 적용에 관한 이론적 연구)

  • 손건식;이용래;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.15-26
    • /
    • 1997
  • In this study, the theoretical investigation of the electrically heated catalyst(EHC) for vehicle application has been carried out using the thermal equivalence of EHC system and the data of vehicle tests to meet ultra low emission vehicle(ULEV) standard. To improve the efficiency of EHC system, it is necessary to understand relation between the power, the operating time and the conversion efficiency of EHC system. The relation was found with thermal equivalence of EHC system which considers the power supply to EHC, heat loss, chemical exothermic energy generated by oxidation reaction and net energy coming in via the exhaust gas. From this relation, the limits of needful power and operating time to meet the ULEV standard can be suggested, when the conversion efficiency of catalyst was known.

  • PDF

An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance (장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구)

  • Yoon, Seok-Mann;Moon, Seung-Hyun;Lee, Seung-Jae;Choi, Soon-Young
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.195-202
    • /
    • 2010
  • A third of primary energy is lost as a waste heat. To improve this inefficient use of energy, systems using chemical reaction have been suggested and studied. In this study, methanol decomposition/synthesis reaction as a chemical reaction was selected for long time heat storage and long distance heat transport system because of safe, cheap and gaseous product. The purpose of this study is to find the optimal conditions in the methanol decomposition and synthesis reactions for long distance heat transport. Several parameters such as reaction temperature, pressure, $H_2$/CO ratio, space velocity, catalyst particle size were tested to find the effects on the reaction rates for the methanol synthesis. And the reaction temperature, space velocity, catalyst particle size were tested to find the effects on the production concentration for the methanol decomposition.

Steady states and dynamic behavior of an LDPE autoclave reactor

  • Lee, Jin-Suk;Chang, Kil-Sang;Kim, Jae-Yeon;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.813-818
    • /
    • 1989
  • A two compartmented autoclave reactor for the polymerization of low density polyethylene is analyzed with respect to the effects of heat transfer and operation variables. Each compartment being considered as a completely mixed cell, two CSTRs model is proposed. The system shows various multiplicity features of steady state and periodic oscillatory motions. Heat removal efficiency and initiator supplement appear to have significant effect on the conversion of monomer with the temperature properly maintained, which should be taken into account in the reactor design.

  • PDF