• 제목/요약/키워드: chemical handling

검색결과 280건 처리시간 0.022초

Comparison of Recognition of Chemical Substances of Cosmetics Manufacturing Workers (화장품 제조업 근로자의 화학물질 인식도 비교)

  • Lee, Sangmin;Park, Keun Seop;Eoh, Won Souk
    • Journal of the Korean Society of Safety
    • /
    • 제35권2호
    • /
    • pp.17-27
    • /
    • 2020
  • To identify the relationship between types of employment(regular and non-regular group) and departments classification (administration, product and research group) and the levels of recognition of chemical substances, a total of 117 workers in cosmetics workplaces. Mainly, regular group and research group showed higher recognition of chemical substances (PPE, ventilation, chemical management, hazards in handling chemicals, skin contact) than non-regular group and administration, product group, but In some cases, production and administrative groups were high. Descriptive statistics(SAS ver9.2)was performed. the results of recognition of chemical substances were analyzed the mean and standard deviation by t-test, and anova, (P=0.05). These results cosmetics manufacturing workplaces have normal level of the perception of chemical substances. In most of the employment types, the regular workers showed high recognition, and the working departments showed high recognition in the research and production groups. Therefore, OEM and ODM cosmetics manufacturers regularly identify characteristics and needs of workplaces and workers, and suggest the development of experience and practiced education programs and risk assessment tools that can raise worker awareness.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • 제33권4호
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

Simulation and Damage Analysis of an Accidental Jet Fire in a High-Pressure Compressed Pump Shelter

  • Jang, Chang Bong;Choi, Sang-Won
    • Safety and Health at Work
    • /
    • 제8권1호
    • /
    • pp.42-48
    • /
    • 2017
  • Background: As one of the most frequently occurring accidents in a chemical plant, a fire accident may occur at any place where transfer or handling of combustible materials is routinely performed. Methods: In particular, a jet fire incident in a chemical plant operated under high pressure may bring severe damage. To review this event numerically, Computational Fluid Dynamics methodology was used to simulate a jet fire at a pipe of a compressor under high pressure. Results: For jet fire simulation, the Kemeleon FireEx Code was used, and results of this simulation showed that a structure and installations located within the shelter of a compressor received serious damage. Conclusion: The results confirmed that a jet fire may create a domino effect that could cause an accident aside from the secondary chemical accident.

An Experiment on Performance Evaluation of a Vapor Condensation Type Air Washer System for Semiconductor Clean Rooms (반도체 클린룸용 수증기 응축식 에어와셔 시스템의 성능평가)

  • Yeo, Kuk-Hyun;Park, Sang-Tae;Yoo, Kyung-Hoon;Son, Seung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.442-447
    • /
    • 2006
  • In semiconductor manufacturing clean rooms, it becomes important to remove airborne molecular contaminants as well as particulate contaminant in outdoor air introduced into clean rooms. One suitable control technique for these chemical contaminants is air washing by water in an outdoor air handling unit. In order to enhance the removal efficiency of chemical contaminants the effect of adding a heating and humidifying process before an air washer was examined.

  • PDF

Suggestions for Increasing Utilization of KORA for Supporting the Off-site Risk Assessment System (화학사고 장외영향평가 지원 프로그램(KORA)의 활용도 증대를 위한 제언)

  • Kim, Jungkon;Ryu, Jisung;Ryu, Taekwon;Kwak, Sollim;Lim, Hyeongjun;Choi, Woosoo;Jung, Jinhee;Lee, Jieun;Lim, Dongyeon;Yoon, Junheon
    • Journal of Environmental Health Sciences
    • /
    • 제44권2호
    • /
    • pp.124-132
    • /
    • 2018
  • Objectives: All enterprises intending to install and operate hazardous chemical handling facilities should prepare an off-site risk assessment (ORA) report that evaluates the impact of potential chemical accidents on the surrounding environment and population. This study was conducted to introduce the process of development and the functioning of the Korea Off-site Risk Assessment support tool (KORA) developed by the National Institute of Chemical Safety and to suggest manners to increase its utilization. Additionally, this article provided an overview of KORA. Methods: In order to identify problems with and refinements for KORA, the required items for each phase of KORA were derived by analyzing the Chemical Control Act and related administrative regulations. Results: The functions of KORA made receptor-considered assessment of chemical accidents possible, but several limitations were found in particular phases, such as the analysis of impact range, consideration of sensitive receptors, and assessment of environmental receptors. Conclusion: In this study, we suggested manners to increase the utilization of KORA. It is anticipated that the further research suggested in the study could contribute to the stabilization of the KORA system.

Impermeable Standards for the Concrete Bottom of Dikes for Crude Oil Storage Tanks (원유저장탱크 방류벽의 콘크리트 바닥재 불침투성 세부기준 연구)

  • Shin, Changhyun;Park, Jai Hak;Yoon, Junheon
    • Journal of the Korean Society of Safety
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2016
  • The bottom of dikes must be kept impermeable to control hazardous chemicals spilled from storage tanks. Currently, insufficient related chemical control laws lead to a possibility to spread through the bottom. Generally, due to the high cost of installation and periodical maintenance, many businesses prefer to install the bottom with general concrete. But, since the impermeability of concrete is dependent on the kind of materials and chemical reaction, all concrete cannot be considered as impermeable material. Thus, it is necessary to make the installation standards of the dike bottom clear in order to avoid the argument over the impermeability and prevent the chemical accident. This study has suggested the standards of impermeable concrete by conducting 7-day exposure test to crude oil with the pilot dikes. The results have showed that the standards have the better impermeable performance compared with the germany standard, which have been penetrated at the maximum penetration depth of 1.9 cm. This study is expected to contribute to both the risk reduction of penetrating into the bottom and the cost reduction of spending to make the bottom of dikes impermeable.

Analysis on the Risk of the Impermeable Concrete Bottom of Dikes for Nitric Acid Storage Tanks (질산 저장탱크 방류벽의 불침투성 콘크리트 바닥에 대한 위험성 평가)

  • Shin, Changhyun;Park, Jai Hak;Yoon, Junheon
    • Journal of the Korean Society of Safety
    • /
    • 제31권3호
    • /
    • pp.53-59
    • /
    • 2016
  • Considering the chemical reaction between concrete which is the raw material of the dike bottoms and hazardous chemicals, some chemicals can have negative effects on the impermeability of concrete dike bottoms. The impermeable standards for the concrete bottom of dikes have been made in the recent study, but the previous study was based on the exposure test to crude oil which is not corrosive and not related to the chemical reaction. It can be concluded that the test of crude oil can't represent all kinds of hazardous chemicals, especially highly corrosive chemicals. Meanwhile, this study has conducted the exposure test to nitric acid that is strongly corrosive and very hazardous. The results have showed that nitric acid has been penetrated at the maximum penetration depth of 2.9 cm for 7 days and the impermeable standards are better than the germany standard. Through this study with severe chemical, the scientific basis on the installation standards of all dike bottoms which are generally used in the industry has been obtained.

A Study on the Development of Self-Checklists for Small and Medium-Sized Chemical Industries (중소규모 화학업종을 위한 자율점검표 개발 연구)

  • Woo Sub Shim;Kyeong-Seok Oh
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제26권5호
    • /
    • pp.757-763
    • /
    • 2023
  • Major industrial accidents in which workers die due to fires or explosions while working at chemical substance handling workplaces continue to occur. Among the major industrial accidents that occurred between 2005 and 2021, the accident status by work situation and equipment was analyzed. Through analysis, it was confirmed that storage, reaction, and piping facilities were the main causes of the accident, and a self-checklist for each facility was developed. Verification was conducted through the supply and use groups to evaluate the suitability of the use, duties, and items of the self-checklist. The user group showed higher satisfaction than the supplier group for all three suitability of use, job, and item. In particular, since the inspection items of the self-checklist were organized around the cause of the accident derived through the analysis of actual accident cases, the satisfaction level was high in all groups. It is expected that the self-checklist developed through this study will be useful not only for large companies but also for small and medium-sized chemical industries that lack professional manpower.

A Study on the Characteristics of Production and Using for Acidic Chemicals with High Accident Frequency (화학사고 빈도가 높은 산 계열 물질의 취급 특성 연구)

  • Kim, Ki-Joon;Lee, Jin-Seon;Yoon, Young-Sam;Jung, Mi-Suk;Yoon, Junheon;Seok, Kwang-Seol
    • Korean Journal of Hazardous Materials
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Acidic chemicals like sulfuric acid, nitric acid and hydrogen chloride take up 37% of the total chemical accidents which took place for the past 10 years. When an acidic chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, we have only little reference data for production and using of acidic chemicals. In this study, we investigated characteristics of production and using for acidic chemicals with high accident frequency. As a results, domestic chemical accidents were categorized according to chemical types and production, using, and handling characteristics of acidic chemicals were identified. Sulfuric acid was handled in the largest amount, followed in the order of hydrogen chloride, nitric acid, acrylic acid, and hydrogen fluoride. Sulfuric acid is used in the industry of manufacturing composite fertilizer and mainly used for manufacturing fertilizer. Hydrogen chloride is used in the industry of manufacturing basic chemicals for petrochemical family and mainly used for pH regulator. It is expected that this results could be used as preliminary data for making decisions on facilities required intensive management in order to prevent chemical accidents and prepare countermeasures against such accidents.

A Study on Prevention of Explosion Accidents (폭발재해 예방대책에 관한 소고)

  • Kim In Sung
    • Explosives and Blasting
    • /
    • 제12권3호
    • /
    • pp.32-41
    • /
    • 1994
  • The specific characters in recent Chemical processing and industrial plants are the handling of severe limit conditions such as high pressure, high and low temperature, high speed production and transportation plant automation and appearance of many new hazardous materials in numbers and quantity. The possibilities of these characters causing the accident and environmental pollution in industrial activities become very high. This paper describes the concrete policy In prevent the explosion accident out of the many accidents which are the safety of the safety engineering.

  • PDF