• Title/Summary/Keyword: chemical extractions

Search Result 48, Processing Time 0.024 seconds

A Comparative Study on Green Liquor Pre-Pulping Extraction of Mixed Hardwood Chips (혼합 하드우드 칩으로부터 녹액(Green Liqour)선-펄핑추출 공정에 관한 연구)

  • Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.561-567
    • /
    • 2013
  • Mixed hardwood chips were pre-pulping extracted with green liquor prior to kraft pulping in order to recover hemicelluloses for use as biofuels. This green liquor solution containing mainly sodium sulfide and sodium carbonate was applied at different alkali charges (expressed as $Na_2O$) of 0, 1, 3, and 5% on dry wood weight. The extractions were performed at $160^{\circ}C$ for residence times ranging from about 1-2 h to determine the effect of extraction severity on composition of the pre-pulping extract. The severity of hemicellulose extraction time and green liquor charge controls the concentration of acetic acid and monosaccharide sugars available for downstream processing, the accumulation of degradation products such as organic acids and furans in the extract. As the alkali charge was increased, the amount of acetate side chains on the hemicelluloses and the dissolved lignin in the extract increased but the carbohydrate and sugars in the extract decreased appreciably. Hot water extraction (0% alkali addition) released the greatest amount of carbohydrates, up to 29.80 g/L measured as component sugars, but resulted in the greatest decrease in pulp yield. Meanwhile, pre-pulping extraction with 3% green liquor increased the pulp yield while greatly reducing the component sugars to 7.08 g/L. Fundamental data obtained in this study will allow selection of optimum hemicellulose extraction conditions for integrating the extraction operation into the Kraft pulping process.

Lipid Extraction from Nannochloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Nannochloropsis sp. 미세조류로부터 바이오디젤 생산용 지질의 추출)

  • Choi, Kyung-Seok;Ryu, Jae-Hun;Park, Dong-Jun;Oh, Sea-Cheon;Kwak, Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.205-210
    • /
    • 2015
  • In this paper, microalgae lipid extractions were performed using conventional organic solvent and supercritical carbon dioxide (SC-$CO_2$) for biodiesel-convertible lipid fractions. The highest levels (58.31%) of fatty acid methyl ester (FAME) content in the lipid extracted by SC-$CO_2$ was obtained, and 18.0 wt.% crude lipid yield was achieved for Bligh-Dyer method. In the SC-$CO_2$ extraction, methanol as a co-solvent was applied to increase the polarity of extract. The experimental results indicated that crude lipid yield, FAME content and yield extracted by combination of SC-$CO_2$ with methanol were 12.5 wt.%, 56.32% and 7.04 wt.%, respectively, and this method could reduce the extraction time from 2 hour to 30 min when compared to SC-$CO_2$ extraction. Therefore, SC-$CO_2$ extraction is proven to be an environmentally-friendly and an effective method for lipid extraction from microalgae.

Isolation and Purification of Bioactive Materials Using High-Performance Counter-Current Chromatography (HPCCC) (고속역류크로마토그래피 기술을 이용한 생리활성 물질의 분리 및 정제)

  • Jung, Dong-Su;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2010
  • Many successive liquid-liquid extractions occur enabling purification of the crude material to occur. In high performance counter-current chromatography (HPCCC), crude material is partitioned between two immiscible layers of solvent phases. The stationary phase (SP) is retained by hydrodynamic force field effect and the mobile phase (MP) is pumped through the column. Purification occurs because of the different solubility of the components in the liquid mobile and stationary phases. There are many key benefits of liquid stationary phases such as high mass and volume injection loadings, total sample recovery, and easy scale-up. Many researchers showed that predictable scale-up from simple test is feasible with knowledge of the stationary phase retention for the planned process scale run. In this review we review the recent advances in HPCCC research and also describe the key applications such as natural products and synthetics (small or large molecules).

Studies on Preparation and Quality of Oyster(Crassostrea gigas), Sea mussel(Mytilus coruscus) and Crab(Portanus tribuerculata) Extracts by Water Extraction (열수추출(熱水抽出)에 의한 어패류 추출물의 제조 및 품질)

  • Kim, Dong-Soo;Lee, Young-Chul;Kim, Young-Dong;Kim, Young-Myoung
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.385-391
    • /
    • 1988
  • In an attempt to develop natural seasoning materials by use of shellfishes and crustaceans, contents of taste components such as amino acids, nucleotide and its derivatives, the extractability of oyster (Crassostrea gigas), sea mussel(Mytilus coruscus) and crab(Portanus tribuerculata) were investigated. As a result of chemical analysis and sensory evaluation, the optimum condition of extraction could be concluded as extracting fresh or frozen raw materials for about 40 min. at $95^{\circ}C$ with 1.5 to 2 times of water by volume. The contents of free amino acids in the extractions were much in sequence as crab(1,886 mg%), mussel(765 mg%) and oyster(554 mg%), and the dominant amino acids in each extracts were identified as glutamic acid, alanine, glycine, proline and arginine in oyster, threonine, alanine, arginine, glycine and glutamic acid in mussel, arginine, proline, lysine, alanine and threonine in crab respectively. In addition, the major nucleotides affecting as taste enhancer of each extracts were estimated as inosine in oyster and crab, and inosine monophosphate in mussel respectively.

  • PDF

Physicochemical Characterization of Extrudate Solid Formulation of Angelica gigas Nakai Prepared by Hot Melt Extrusion Process

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Koo, Ja Seong;Park, Cheol Ho;Kang, Wie Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.72-72
    • /
    • 2018
  • The root of Angelica gigas Nakai (AGN) is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, a major challenge associated with the usage of the active compounds from AGN is their poor water solubility. Therefore, this work aimed to enhance the solubility of active compounds by a chemical (viz. surfactant) and physical (hot melt extrusion) crosslinking method (CPC). Infrared Fourier transform spectroscopy (FT-IR) revealed multiple peaks in extrudate solids representing new functional groups including carboxylic acid, alkynes and benzene derivatives. Differential scanning calorimetry (DSC) analysis of the extrudate showed lower glass transition temperature (Tg) and lower enthalpy (${\Delta}H$) (Tg: $43^{\circ}C$; ${\Delta}H$: <6 (J/g)) compared to the non-extrudate (Tg $68.5^{\circ}C$; ${\Delta}H$: 123.2) formulations. X-ray powder diffraction (XRD) analysis revealed amorphization of crystal materials in extrudate solid. In addition, nanonization, enhanced solubility and higher extraction of phenolic compounds were achieved in the extrudate solid. Among the different extrudates, acetic acid- and Span 80-mediated formulations showed superior extractions. We conclude that the CPC method successfully enhanced the production of amorphous nano dispersions from extrudate solid formulations.

  • PDF

Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant (유화제 첨가 용융압출을 이용한 참당귀 성형체의 페놀성분 나노화 및 용해도 향상)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Go, Eun Ji;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.317-327
    • /
    • 2018
  • Background: The root of Angelica gigas Nakai is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, the poor water solubility of the active components in A. gigas Nakai is a major obstacle to its bioavailability. Methods and Results: This work aimed at enhancing the solubility of the active compounds of A. gigas Nakai by a chemical (using a surfactant) and physical (hot melt extrusion, HME) crosslinking method. Fourier transform infrared spectroscopy revealed multiple peaks in the case of the extrudate solids, attributable to new functional groups including carboxylic acid, alkynes, and benzene derivatives. Differential scanning calorimetry analysis showed that the extrudate soilid had a lower glass transition temperature ($T_g$) and enthalpy (${\Delta}H$) ($T_g:43^{\circ}C$, ${\Delta}H$ : < 6 J/g) as compared to the non-extrudate ($T_g:68.5^{\circ}C$, ${\Delta}H:123.2$) formulations. X-ray powder diffraction analysis revealed the amorphization of crystalline materials in the extrudate solid. In addition, enhanced solubility (53%), nanonization (403 nm), and a higher amount of extracted phenolic compounds were achieved in the extrudate solid than in the non-extrudate (solubility : 36%, nanonization : 1,499 nm) formulation. Among the different extrudates, acetic acid and span 80 mediated formulations showed superior extractions efficiency. Conclusions: HME successfully enhanced the production of amorphous nano dispersions of phenolic compound including decursin from extrudate solid formulations.

A TEM STUDY OF THE RESIN-DENTIN INTERDIFFUSION ZONE FORMED BY ONE-BOTTLE DENTIN ADHESIVE SYSTEMS (단일용기 상아질 접착제 처리 후 레진-상아질 경계면에 대한 투과전자현미경적 연구)

  • Yang, Dong-Woon;Park, Seong-Ho;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.180-192
    • /
    • 2000
  • One bottle system was recently developed in order to simplify the clinical skills and save chair time after continuous improvements on dentin bonding agents. There has been many studies to measure the bond strength of one bottle systems but no actual work has been done on micromorphologic study of resin-dentin interdiffusion zone after one bottle system application. To evaluate the bonding patterns of various commercially available one bottle systems to dentin, observation of resin-dentin interdiffusion zone under TEM was performed. Caries-free human third molars within one month of extractions were chosen for the experiments. The molars were sectioned 1mm above the cementoenamel junction and got rid of the root portions. Crown portions of the teeth were sectioned parallel to occlusal surface so that dentin discs of 1mm in thickness were remained. 7 one bottle systems and 1 two bottle system were applied according to manufacturer's instructions and followings were the results. 1. In every experimental groups, cross bandings of collagen fiber were distinguishable and tight bon dings between the bonding agents and dentin were observed. 2. Hybrid layer was clearly observed in ONE-STEP$^{(R)}$, Prime & Bond$^{(R)}$ 2.1, Syntac$^{(R)}$ SC, MAC-BOND II groups but it was not clear in Single Bond, D-Liner Dual PLUS, ONE COAT BOND groups. 3. Electron-density of hybrid layer was uniform in pattern in MAC-BOND II, Prime & Bond$^{(R)}$ 2.1 groups but not so uniform in ONE-STEP$^{(R)}$ group. 4. Electron-dense amorphous phase in most superior layer of the resin-dentin interdiffusion zone was characteristically observed in Single Bond, Syntac$^{(R)}$ SC, ONE COAT BOND groups. It can be concluded that bondings between the dentin bonding agents and dentin can be various in pattern according to their chemical compositions and the condition during applications.

  • PDF

Contents and Seasonal Variations of Arsenic in Paddy Soils and Rice Crops around the Abandoned Metal Mines (폐금속광산 주변 논토양 및 벼작물의 비소함량과 계절적 변화)

  • Kwon, Ji Cheol;Jung, Myung Chae;Kang, Man Hee
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.329-338
    • /
    • 2013
  • The objective of this study is to investigate the contents and seasonal variation of arsenic in soils and crop plant(rice) in paddy fields around the abandoned metal mines in Korea. The soils were extracted by various methods including aqua regia, 1 M $MgCl_2$, 0.01 M $CaCl_2$ and 0.05 M EDTA to evaluate the relationships between soils and crop plants(rice). According to correlation analysis, statistically significant correlation with the four methods(p<0.01) were found in soils extracted by various chemical solutions and arsenic contents in soils were decreased in the order of 1M $MgCl_2$ > 0.01M $CaCl_2$ > 0.05 M EDTA. Biological accumulation coefficients(BACs) of rice stalks were higher than those of rice grain, and the coefficients under reducing(August) environment were higher than those under oxidizing conditions(October). Assuming the rice consumption of 315 g/day by farm households in Korea, the amount of daily intake of arsenic were estimated to be 77.8 ${\mu}g/day$. The daily intake of arsenic from the rice estimates up to 65% of ADI(acceptable daily intake) that the FAO/WHO Joint Food Additive and Contaminants Committee has set to evaluate their safeties.

Optimization of Microwave-assisted Extraction Conditions for Production of Bioactive Material from Corn Stover (옥수수 대로부터 생리활성물질 생산 증대를 위한 마이크로파 추출 공정 최적화)

  • Min, Bora;Han, Yeojung;Lee, Dokyeoung;Jo, Jaemin;Jung, Hyunjin;Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • Corn stover is known as a good candidate for a functional food ingredient when the main lignocellulosic material, lignin, is used as bioactive materials as form of polyphenolic compounds. The purpose of this study was to determine the microwave extraction conditions under which total phenolic compounds (TPC) and flavonoid contents of corn stover were maximized. Microwave-assisted extracts using sulfuric acid ranging from 0 to 1.0 mol with extraction time between 40 and 240 sec were conducted by using response surface methodology (RSM). Microwave power showed significant effects (p<0.05) and the concentrations of TPC and flavonoids increased with increased level of microwave power and extraction time. The optimum conditions for corn stover extraction were determined as 698.6 W, 240 sec, and 0 mol sulfuric acid, and the predicted value of TPC and flavonoid is 82.4 mg GAE/g DM and 18.1 mg/g DM, respectively. Microwave extraction was evaluated as an economic process with low energy consumption, short extraction and high extraction yield of bioactive including TPC and flavonoids compared to conventional extractions.

Differentiation of Sorptive Bindings of Some Radionuclides with Sequential Chemical Extractions in Sandstones (순차적화학추출법을 사용한 방사성핵종의 사암에 대한 수착유형 평가)

  • Park, Chung-Kyun;Hahn, Pil-Soo;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.461-470
    • /
    • 1994
  • Sorption experiments of $^{60}$ Co, $^{85}$ Sr. and $^{137}$ Cs onto sandstone particles in a batch were carried out to investigate the migration mobility. Sorption kinetics and reversibility as well as sorption mechanisms were examined. Sorption reaction occurred mostly within 10 hours on the outer surface of the sandstone particle but diffusion into the inner surface of the mineral has still occurred after that time. In order to distinguish sorption types of radionuclides, a sequential chemical extraction was introduced. The sorbed radionuclides were then extracted by applying different solutions of synthetic groundwater, CaCl$_2$, KCl and KOX-HA Especially KCl is adopted to extract the ion-exchanged cesium. Sorption types considered are reversible sorption under groundwater condition, ion exchange, association with ferro-manganese oxides or oxyhydroxides, and irreversible fixation. Strontium sorbs onto the sandstone surface mainly by fast and reversible ion exchange reaction. However, cobalt and cesium do not sorb by simple process. The main sorptive binding of cobalt was the association with ferro-manganese oxides and the secondary one was irreversible fixation. Diffusion into the lattice of minerals controlled the sorption rate of cobalt The main sorptin type of cesium was irreversible fixation, while ion exchange reaction was the secondary importance. Hence the oreder of migration mobility for the three radionuclides was Sr$^{2+}$ > Co$^{2+}$ > Cs$^{+}$ in the sandstones.

  • PDF