• Title/Summary/Keyword: chemical etching

Search Result 932, Processing Time 0.026 seconds

Single Crystal Growth of $(TeO_2)$ by CZ Technique (용액인상법에 의한 파라텔루라이트 $(TeO_2)$ 단결정 육성)

  • Sohn, Wook;Jang, Young-Nam;Bae, In-Kook;Chae, Soo-Chun;Moon, H-Soo
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.141-157
    • /
    • 1995
  • Single crystals of TeO2 with large diameter were grown by Czochralski technique with auto-diameter control system. The ratio of crystal to crucible was 60-70%. The effect of critical pulling and rotation rate on the crystal quality was studied. Optimum growth parameters for high quality crystal pulling rate was less than 1.2 mm/hr. The solid-liquid interface was convex at the rotation rate of 10-23 rpm and concave at the rotation rate of more than 25 rpm, depending on the size of crystal and crucible. The platinum concentration in the melts is one of the main factors of the constitutional supercooling and thus the bubble entrapment in the growing crystal. Growth axis was confirmed to {110} direction during the whole growth procedure. Infrared spectrometric study and dislocation density measurment by chemical etching method on the grown crystal were performed. Finally, the reasons of cooperation of striations, inclusions, and optical inhomogeneities were discussed.

  • PDF

Aspect ratio enhancement of ZnO nanowires using silicon microcavity

  • Kar, J.P.;Das, S.N.;Choi, J.H.;Lee, Y.A.;Lee, T.Y.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • A great deal of attention has been focused on ZnO nanowires for various electronics and optoelectronics applications. in the pursuit of next generation nanodevices, it would be highly preferred if well-ordered ZnO nanowires of lower dimension could be fabricated on silicon. Before the growth of nanowires, silicon substrates were selectively etched using silicon nitride as masking layer. Vertical aligned ZnO nanowires were grown by metal organic chemical vapor deposition on patterned silicon substrate. The shape of nanostructures was greatly influenced by the micropatterned surface of the substrate. The aspect ratio, packing fraction and the number density of nanowires on top surface are around 10, 0.8 and $10^7\;per\;mm^2$, respectively, whereas the values are 20, 0.3 and $5\times10^7\;per\;mm^2$, respectively, towards the bottom of the cavity. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy confirmed the single crystalline growth of the ZnO nanowires along [0001] direction.

  • PDF

The Effects of Precursor on the Formation and Their Properties of Spin-on Dielectric Films Used for Sub-50 nm Technology and Beyond (50 nm 이상의 CMOS 기술에 이용되는 Spin-on Dielectric 박막 형성과 그 특성에 미치는 전구체의 영향)

  • Lee, Wan-Gyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2011
  • Polysilazane and polymethylsilazane based precursor films were deposited on Si-substrate by spin-coating, subsequently annealed at $150{\sim}850^{\circ}C$, and characterized. Structural analysis, shrink, compositional change, etch rate, and gap-filling were observed. Annealing the precursor films led to formation of spin-on dielectric films. C-containing precursor films showed that less loss of N, H, and C while less gain of O than that of C-free precursor films at $400^{\circ}C$, but more loss of N, H, and C while more gain of O at $850^{\circ}C$. Thus polysilazane based precursor films exhibited less reduction in thickness of 14.5% than silazane based one of 15.6% at $400^{\circ}C$ but more 37.4% than 19.4% at $850^{\circ}C$. FTIR indicated that C induced smaller amount of Si-O bond, non-uniform property, and lower resistance to chemical etching.

Effects of $N_2/H_2$ plasma treatments on enhancement of neuronal cell affinity on single-walled carbon nanotube paper scaffolds

  • Yoon, Ok-Ja;Lee, Hyun-Jung;Jang, Yeong-Mi;Kim, Hyun-Woo;Lee, Won-Bok;Kim, Sung-Su;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.393-393
    • /
    • 2010
  • The biocompatibility of materials used for biomedical applications depends on chemical composition, mechanical stiffness, surface energy, and roughness. The plasma treatment and etching process is a very important technology in the biomedical fields due to possibility of controlling the surface chemistry and properties of materials. In this work, $N_2/H_2$ plasma were treated on single-walled carbon nanotubes (SWCNTs) paper and characterization of treated SWCNTs paper was carried out. Also we investigated neurite outgrowth from SH-SY5Y on treated SWCNTs paper. The results indicated that $N_2/H_2$ plasma-modified SWCNTs paper enhanced neuronal cell adhesion, viability, neurite outgrowth and branching in vitro and exerted a positive role on the health of neural cells.

  • PDF

Characteristics of Optical Absorption in ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ Multi-Quantum Wells by a Surface Photovoltage Method (표면 광전압 방법에 의한 ${Al_{0.24}}{Ga_{0.76}}As/GaAs$ 다중 양자우물 구조의 광 흡수 특성)

  • Kim, Gi-Hong;Choe, Sang-Su;Son, Yeong-Ho;Bae, In-Ho;Hwang, Do-Won;Sin, Yeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.698-702
    • /
    • 2000
  • The characteristics of optical absorption in $Al_{0.24}Ga_{0.76}As/GaAs$ multi-quantum wells(MQWs) structure were investigated by using the surface photovoltage(SPV). The Spy features near 1.42 eV showed two overlapping signals. By chemical etching, we found associated with the GaAs substrate and the GaAs cap layer. The Al composition(x=24 %) was determined by Kuech's composition formula. In order to identify the transition energies. the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum wells An amplitude variation of the relative Spy intensity from the GaAs substrate, llH, and llL was observed at different light intensities. A variation in the SPY line shape of the transition energies were observed with decreasing tempera­t ture.

  • PDF

EFFECTS OF SURFACE TREATMENT AND BONDING AGENTS ON SHEAR BOND STRENGTH OF THE COMPOSITE RESION TO IPS-EMPRESS CERAMIC (IPS-Empress 도재에 대한 콤포짓트 레진의 전단결합강도)

  • Yoon, Byeung-Sik;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.413-423
    • /
    • 1998
  • Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability, biocompatibility and translucency. This study evaluated the shear bond strength of composite resin to the new heat-pressed ceramic material (IPS-Empress System) depending on the surface treatments and bonding agents. The surface treatments were etching with 4.0% hydrofluoric acid, application of silane, and the combination of the two methods. Composite resin was bonded to ceramic with four kinds of dentin bonding agents(All-Bond 2, Heliobond, Scotch bond Multi-purpose and Tenure bonding agents). The ceramic specimen bonded with composite resin was mounted in the testing jig, and the universal testing machine(Zwick 020, Germany) was used to measure the shear bond strength with the cross head speed of 0.5 mm/min. The results obtained were as follows 1. The mean shear bond strength of the specimens of which the ceramic surface was treated with the combination of hydrofluoric acid and silane before bonding composite resin was significantly higher than those of the other surface treatment groups(p<0.05). 2. In the case of All-Bond 2 and Scotchbond Multi-purpose bonding agent group, the surface treatment methods did not influenced significantly on the shear bond(p>0.05). 3. Of the four bonding agents tested, the shear bond strength of Heliobond was significantly lower than those of other bonding agents regardless of the surface treatment methods(p<0.05). 4. The highest shear bond strength($12.55{\pm}1.92$ MPa) was obtained with Scotchbond Multipurpose preceded by the ceramic surface treatment with the combination of 4% hydrofluoric acid and silane.

  • PDF

Halogen-based Inductive Coupled Plasma에서의 W 식각시 첨가 가스의 효과에 관한 연구

  • 박상덕;이영준;염근영;김상갑;최희환;홍문표
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.41-41
    • /
    • 2003
  • 텅스텐(W)은 높은 thermal stability 와 process compatibility 및 우수한 corrosion r resistance 둥으로 integrated circuit (IC)의 gate 및 interconnection 둥으로의 활용이 대두되고 있으며, 차세대 thin film transistor liquid crystal display (TFT-LCD)의 gate 및 interconnection m materials 둥으로 사용되고 았다. 그러나, 이러한 장점을 가지고 있는 팅스텐 박막이 실제 공정상에 적용되가 위해서는 건식 식각이 주로 사용되는데, 이는 wet chemical 을 이용한 습식 식각을 사용할 경우 낮은 etch rate, line width 의 감소 및 postetch residue 잔류 동의 문제가 발생하기 때문이다. 또한 W interconnection etching 을 하기 위해서는 높은 텅스텐 박막의 etch rate 과 하부 layer ( (amorphous silicon 또는 poly-SD와의 높은 etch selectivity 가 필수적 이 라 할 수 있다. 그러 나, 지금까지 연구되어온 결과에 따르면 텅스탠과 하부 layer 와의 etch selectivity 는 2 이하로 매우 낮게 관찰되고 았으며, 텅스텐의 etch rate 또한 150nm/min 이하로 낮은 값을 나타내고 있다. 따라서 본 연구에서는 halogen-based inductively coupled plasma 를 이용하여 텅스텐 박막 식각시 여러 가지 첨가 가스에 따른 높은 텅스탠 박막의 etch rate 과 하부 layer 와의 높은 etch s selectivity 를 얻고자 하였으며, 그에 따른 식각 메커니즘에 대하여 알아보고자 하였다. $CF_4/Cl_2$ gas chemistry 에 첨 가 가스로 $N_2$와 Ar을 첨 가할 경 우 텅 스텐 박막과 하부 layer 간의 etch selectivity 증가는 관찰되지 않았으며, 반면에 첨가 가스로 $O_2$를 사용할 경우, $O_2$의 첨가량이 증가함에 따라 etch s selectivity 는 계속적으로 증가렴을 관찰할 수 있었다. 이는 $O_2$ 첨가에 따라 형성되는 WOF4 에 의한 텅스텐의 etch rates 의 감소에 비하여, $Si0_2$ 등의 형성에 의한 poly-Si etch rates 이 더욱 크게 감소하였기 때문으로 사료된다. W 과 poly-Si 의 식각 특성을 이해하기 위하여 X -ray photoelectron spectroscopy (XPS)를 사용하였으며, 식각 전후의 etch depth 를 측정하기 위하여 stylus p pmfilometeT 를 이용하였다.

  • PDF

Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process (인쇄회로기판 제조공정 중 발생한 슬러지 내 건식환원 처리를 통한 구리 회수를 위한 슬러지 분석 및 열역학적 계산)

  • Han, Chulwoong;Kim, Young-Min;Kim, Yong Hwan;Son, Seong Ho;Lee, Man Seung;Lee, Ki Woong
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.85-96
    • /
    • 2017
  • In this study, we tried to select a slag system capable of pyro-metallurgical process through analysis of sludge generated from PCB plating and etching process solution. Based on this, the possibility of extracting valuable metals in the sludge was studied by experimental and thermodynamic approaches. The sludge was dried at $100{\sim}500^{\circ}C$ and the morphology, chemical composition and phase of the sludge were analyzed. The possibility of pyro-metallurgical process of sludge was investigated through thermodynamic approach using FactSage software.

Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향)

  • Lee, Chae Hong;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Development of Laser Processing Technology and Life Evaluation Method for Lifespan Improvement of Titanium Superhydrophobic Surface (티타늄 초소수성 표면의 수명 향상을 위한 레이저 처리 기법 개발 및 내수명성 평가법 개발)

  • Kyungeun Jeong;Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Song Yi Jung;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.91-96
    • /
    • 2024
  • Recently, extensive studies have been carried out to enhance various performance aspects such as the durability, lifespan, and hardness by combining diverse materials or developing novel materials. The utilization of superhydrophobic surfaces, particularly in the automotive, textile, and medical device industries, has gained momentum to achieve improved performance and efficiency. Superhydrophobicity refers to a surface state where the contact angle when water droplets fall is above 150°, while the contact angle during sliding motion is smaller than 10°. Superhydrophobic surfaces offer the advantage of water droplets not easily sliding off, maintaining a cleaner state as the droplets leave the surface. Surface modification involves two fundamental steps to achieve superhydrophobicity: surface roughness increase and surface energy reduction. However, existing methods, such as time-consuming processes and toxic organic precursors, still face challenges. In this study, we propose a method for superhydrophobic surface modification using lasers, aiming to create roughness in micro/nanostructures, ensuring durability while improving the production time and ease of fabrication. The mechanical durability of superhydrophobic samples treated with lasers is comparatively evaluated against chemical etching samples. The experimental results demonstrate superior mechanical durability through the laser treatment. Therefore, this research provides an effective and practical approach to superhydrophobic surface modification, highlighting the utility of laser treatment.