SF-P054

Effects of N₂/H₂ plasma treatments on enhancement of neuronal cell affinity on single-walled carbon nanotube paper scaffolds

<u>Ok Ja Yoon</u>¹, Hyun Jung Lee², Yeong Mi Jang², Hyun Woo Kim¹, Won Bok Lee², Sung Su Kim^{2*} and Nae-Eung Lee^{1*}

¹School of Advanced Materials Science and Engineering, Center for Advanced Plasma Surface Technology and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon, Kyunggi-do 440-746, Korea

²Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea

The biocompatibility of materials used for biomedical applications depends on chemical composition, mechanical stiffness, surface energy, and roughness. The plasma treatment and etching process is a very important technology in the biomedical fields due to possibility of controlling the surface chemistry and properties of materials. In this work, N_2/H_2 plasma were treated on single-walled carbon nanotubes (SWCNTs) paper and characterization of treated SWCNTs paper was carried out. Also we investigated neurite outgrowth from SH-SY5Y on treated SWCNTs paper. The results indicated that N_2/H_2 plasma-modified SWCNTs paper enhanced neuronal cell adhesion, viability, neurite outgrowth and branching in vitro and exerted a positive role on the health of neural cells.