• Title/Summary/Keyword: chemical elements

Search Result 1,274, Processing Time 0.024 seconds

Progress in the modification of reverse osmosis (RO) membranes for enhanced performance

  • Otitoju, T.A.;Saari, R.A.;Ahmada, A.L.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.52-71
    • /
    • 2018
  • RO membranes, the core elements for RO process formed using polyamide, have found prominent space in membrane technology. RO membranes with better application perspective could be achieved by precise controlling the kinetics of IP reaction and surface modification strategy. Despite huge progresses, great challenges still exist in trade-off between flux, rejections and fouling. More works are necessary to enhance the performance and stability of RO membranes via surface modification. Further insights into the use of natural monomers are necessary. It is anticipated that this article can provide clues for further in-depth evaluation and research in exploring more advanced RO membranes.

Separation and purification of elements from alkaline and carbonate nuclear waste solutions

  • Alexander V. Boyarintsev ;Sergei I. Stepanov ;Galina V. Kostikova ;Valeriy I. Zhilov;Alfiya M. Safiulina ;Aslan Yu Tsivadze
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.391-407
    • /
    • 2023
  • This article provides a survey of wet (aqueous) methods for recovery, separation, and purification of uranium from fission products in carbonate solutions during the reprocessing of spent nuclear fuel and methods for removal of radionuclides from alkaline radioactive waste. The main methods such as selective direct precipitation, ion exchange, and solvent extraction are considered. These methods were compared and evaluated for reprocessing of spent nuclear fuel in carbonate media according to novel alternative non-acidic methods and for treatment processes of alkaline radioactive waste.

A Study on the Simplified Estimating Method of Off-site Consequence Analysis by Concentration of Hydrochloric Acid (염산수용액의 농도별 간이 영향 평가 방법 연구)

  • Jung, Y.k.;Kim, B.;Heo, H.;Yoo, B.;Sin, C.;Yoon, Y.;Yoon, J.;Ma, B.
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • One of the most important elements of the management of chemical accident is threat zone estimation of fires, explosions and toxic gas dispersion based on chemical releases. The threat zone estimation is going to be standard of emergency response for the first defender and base line data of off-site risk assesment (hereinafter referred to as "ORA") and risk management plan (hereinafter referred to as "RMP"). Generally, ALOHA form EPA(U.S.) and Kora(from KOREA MINISTRY OF ENVIRONMENT) has been used for the off-site consequence analysis in Korea. However it is hard to predict accurate consequences rapidly in case of emergency. Hydrochloric acid is a multipurpose raw material used in many industrial applications such as chemical, metal and food industries. It is usually treated in concentrations from 10 ~ 35 %, and release accident have occurred frequently. In this study, we have developed a simplified estimating method and equation to calculate threat zone easily in case of emergency due to release accident of hydrochloric acid.

Investigation of Low-Cost, Simple Recycling Process of Waste Thermoelectric Modules Using Chemical Reduction

  • Kim, Woo-Byoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2167-2170
    • /
    • 2013
  • A low-cost and simple recycling process of waste thermoelectric modules has been investigated using chemical reduction methods. The recycling is separated by two processes, such as dissolving and reduction. When the waste thermoelectric chips are immersed into a high concentration of $HNO_3$ aqueous solution at $100^{\circ}C$, oxide powders, e.g., $TeO_2$ and $Sb_2O_3$, are precipitated in the $Bi^{3+}$ and $HTeO{_2}^+$ ions contained solution. By employing a reduction process with the ions contained solutions, $Bi_2Te_3$ nanoparticles are successfully synthesized. Due to high reduction potential of $HTeO{_2}^+$ to Te, Te elements are initially formed and subsequently $Bi_2Te_3$ nanoparticles are formed. The average particle size of $Bi_2Te_3$ was calculated to be 25 nm with homogeneous size distribution. On the other hand, when the precipitated powders reduced by hydrazine, $Sb_2O_3$ and Te nanoparticles are synthesized because of higher reduction potentials of $TeO_2$ to Te. After the washing step, the $Sb_2O_3$ are clearly removed, results in Te nanoparticles.

Estimated Photodegradation Properties of Acetanilide Using AOPWIN (AOPWIN을 이용한 Acetanilide의 광부해 특성 평가)

  • 권민정;최윤호;송상환;박혜연;구현주;전성환;나진균;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.3
    • /
    • pp.139-142
    • /
    • 2001
  • Acetanilide is a High Production Volume Chemical, which is produced about 2,300 tons/year in Korea as of 1998 survey. Most is used as an intermediate for synthesis of pharmaceuticals and dyes, and the chemical is one of seven chemicals of which human and environmental risk are being assessed by National Institute of Environmental Research under the frame of OECD SIDS program. The Atmospheric Oxidation Program for Microsoft Windows (AOPWIN) is used to estimates the rate constant for the atmospheric, gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals. It is also used to estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program are then used to calculate atmospheric half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN requires only a chemical structure to make these predictions. Structures are entered into AOPWIN by SMILES (Simplified Molecular Input Line Entry System) notations. In this study, one of environmental fate/distribution of the chemical elements, photodegradation of acetanilide was estimated using AOPWIN model based on SMILES notation and chemical name data.

  • PDF

Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives

  • Roychand, R.;De Silva, S.;Law, D.;Setunge, S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.113-124
    • /
    • 2016
  • This paper presents the effect of silica fume and nano silica, used individually and in combination with the set accelerator and/or hydrated lime, on the properties of class F high volume ultra fine fly ash (HV-UFFA) cement composites, replacing 80 % of cement (OPC). Compressive strength test along with thermogravimetric analysis, X-ray diffraction and scanning electron microscopy were undertaken to study the effect of various elements on the physico-chemical behaviour of the blended composites. The results show that silica fume when used in combination with the set accelerator and hydrated lime in HV-UFFA cement mortar, improves its 7 and 28 day strength by 273 and 413 %, respectively, compared to the binary blended cement fly ash mortar. On the contrary, when nano silica is used in combination with set accelerator and hydrated lime in HV-UFFA cement mortar, the disjoining pressure in conjunction with the self-desiccation effect induces high early age micro cracking, resulting in hindering the development of compressive strength. However, when nano silica is used without the additives, it improves the 7 and 28 day strengths of HV-UFFA cement mortar by 918 and 567 %, respectively and the compressive strengths are comparable to that of OPC.

Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena

  • Ahn, Pyung-An;Shin, Eui-Chol;Kim, Gye-Rok;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.549-558
    • /
    • 2011
  • Application of a generalized equivalent circuit including the electrode condition for the Hebb-Wagner polarization in the frequency domain proposed by Jamnik and Maier can provide a consistent set of material parameters, such as the geometric capacitance, partial conductivities, chemical capacitance or diffusivity, as well as electrode characteristics. Generalization of the shunt capacitors for the chemical capacitance by the constant phase elements (CPEs) was applied to a model mixed conducting system, $Ag_2S$, with electron-blocking AgI electrodes and ion-blocking Pt electrodes. While little difference resulted for the electron-blocking cell with almost ideal Warburg behavior, severely non-ideal behavior in the case of Pt electrodes not only necessitates a generalized transmission line model with shunt CPEs but also requires modelling of the leakage in the cell approximately proportional to the cell conductance, which then leads to partial conductivity values consistent with the electron-blocking case. Chemical capacitance was found to be closer to the true material property in the electron-blocking cell while excessively high chemical capacitance without expected silver activity dependence resulted in the electron-blocking cell. A chemical storage effect at internal boundaries is suggested to explain the anomalies in the respective blocking configurations.

Chemical Properties of bamboo Shoots and Their Changes of Chemical Components during The Manufacture of Pickles (죽순의 화학적 특성 및 염장 죽순 제조과정 중 성분 변화)

  • 정희종
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.6
    • /
    • pp.575-581
    • /
    • 1999
  • In result of chemical properties of bamboo shoots and changes of chemical components of salted bamboo shoots during 120 days salting, the contents of moisture crude fat tannin and ascorbic acid were decreased but those of crude protein curde ash and salt concentration were increased. The main free amino acids of bamboo shoots were serine arginine alanine leucine and tyrosine. The content of total free amino acid was rapidly decreased in 80days-past of salting and after that slowly decresed. Wang bamboo shoots was the highest as 1060.18mg/100g in content of total free amino acid. The main mineral elements were K, P, Na and Mg. The contents of Fe and K were the hihest among them. The contents of P, Fe, Zn. Mn. Ge and Cu were decreased but K, Mg, Na and Ca were increased during salting. When fresh bamboo shoots were compared with salted bamboo shoots fresh bamboo shoots contained the contents of moisture crude protein crude fat tannin and ascorbic acid more than salted bamboo shoots did but the less the contents of ash fiber and salt concentration.

  • PDF

Basic Principles of the Validation for Good Laboratory Practice Institutes

  • Cho, Kyu-Hyuk;Kim, Jin-Sung;Jeon, Man-Soo;Lee, Kyu-Hong;Chung, Moon-Koo;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Validation specifies and coordinates all relevant activities to ensure compliance with good laboratory practices (GLP) according to suitable international standards. This includes validation activities of past, present and future for the best possible actions to ensure the integrity of non-clinical laboratory data. Recently, validation has become increasingly important, not only in good manufacturing practice (GMP) institutions but also in GLP facilities. In accordance with the guideline for GLP regulations, all equipments used to generate, measure, or assess data should undergo validation to ensure that this equipment is of appropriate design and capacity and that it will consistently function as intended. Therefore, the implantation of validation processes is considered to be an essential step in a global institution. This review describes the procedures and documentations required for validation of GLP. It introduces basic elements such as the validation master plan, risk assessment, gap analysis, design qualification, installation qualification, operational qualification, performance qualification, calibration, traceability, and revalidation.

Basic Study on the Improvement of Material Removal Efficiency of Sapphire CMP Using Electrolytic Ionization and Ultraviolet Light (전해 이온화와 자외선광을 이용한 사파이어 화학기계적 연마의 재료제거 효율 향상에 관한 기초 연구)

  • Park, Seonghyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.208-212
    • /
    • 2021
  • Chemical mechanical polishing (CMP) is a key technology used for the global planarization of thin films in semiconductor production and smoothing the surface of substrate materials. CMP is a type of hybrid process using a material removal mechanism that forms a chemically reacted layer on the surface of a material owing to chemical elements included in a slurry and mechanically removes the chemically reacted layer using abrasive particles. Sapphire is known as a material that requires considerable time to remove materials through CMP owing to its high hardness and chemical stability. This study introduces a technology using electrolytic ionization and ultraviolet (UV) light in sapphire CMP and compares it with the existing CMP method from the perspective of the material removal rate (MRR). The technology proposed in the study experimentally confirms that the MRR of sapphire CMP can be increased by approximately 29.9, which is judged as a result of the generation of hydroxyl radicals (·OH) in the slurry. In the future, studies from various perspectives, such as the material removal mechanism and surface chemical reaction analysis of CMP technology using electrolytic ionization and UV, are required, and a tribological approach is also required to understand the mechanical removal of chemically reacted layers.