• Title/Summary/Keyword: chemical ecology

Search Result 519, Processing Time 0.024 seconds

Ecological health assessment of Mae Kha Canal, Chiang Mai Province, Thailand in 2023

  • Onalenna Manene;Nick Deadman;Chotiwut Techakijvej;Songyot Kullasoot;Pitak Sapewisut;Nattawut Sareein;Chitchol Phalaraksh
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.110-119
    • /
    • 2024
  • Background: The Mae Kha Canal is one of Chiang Mai's most important waterways. It supports local agriculture, irrigation, and transportation as well as provides stormwater drainage to prevent floods. Due to the unregulated rapid urbanization of the city and lack of efficient waste and wastewater management systems over the past few decades, the canal has become heavily polluted. This study aimed to evaluate the water quality of Mae Kha canal through assessment of the physico-chemical water quality and coliform bacteria. Moreover, benthic macroinvertebrates were samples and assessed using the Biological Monitoring Working Party (BMWPThai) and Average Score Per Taxon (ASPTThai) as biological indices. Results: The physico-chemical showed low dissolved oxygen levels, high levels of ammonia and phosphates, and elevated levels of biochemical oxygen demand, indicating that the water quality had significantly deteriorated. The canal was found to be heavily polluted, with most sites falling into the polluted to very heavily polluted. Coliform bacteria analysis revealed alarmingly high levels of total coliform bacteria and fecal coliform bacteria in the canal. The BMWPThai and ASPTThai scores indicated poor to very poor water quality. Conclusions: The physico-chemical and coliform bacteria indicated that the water quality of the Mae Kha canal had significantly deteriorated. The biological indices also indicated the poor to very poor water quality. This study underscores the urgent need for comprehensive remediation efforts, emphasizing strategic planning, investment, and community engagement to revive the canal's ecological health and water quality.

Effects of Forest Eire on Herb Layer Development and Chemical Properties of Soil (산화가 초본층의 발샐 및 토양의 화학적 특성에 미친 영향)

  • 박관수;이미정;송호경
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • This study was carried out to estimate the effect of forest fire on herb layer development and chemical properties of soil. The forest fire was in April 2000 in Pinus rigida(softwood) and Robinia pseudoacacia(hardwood) dominant forests at Gaejoksan, Daejeon. Vegetation studies were in the two communities and herb layer development study was in July using dominance of Dierssen. The coverage of herb layer was higher in the burned area than in the unburned area in the two study communities. There was no different herb layer species number between the burned and unburned areas, but there was different herb layer species number between the two communities. Soil samples were collected at 0~10cm and 10~20cm soil depths from the unburned and burned sites after 3 days and 8 months of forest fire. There was no forest floor in burned site, but unburned site has the forest floor of 1.5cm thick. There were no significant differences in soil organic matter, total N, available P, exchangeable K, Ca, Na, and Mg, and CEC, pH in all soil depth, between unburned and burned sites after 3 days of forest fire and between burned site after 3 days and 8 months of forest fire, except in organic matter in 10~20cm soil depth in hardwood sites and in exchangeable Ca in the 10~20cm soil depth, and in Mg in the two soil depths in hardwood sites. It seems to be that forest fire had not changed the chemical soil properties in this study.

Changes in Soil Properties Related to Soil Function due to Chemical Spills with Strong Acid and Base (강산 및 강염기 토양 유출에 따른 토양의 생태기능 관련 토양특성 변화)

  • Jeon, Inhyeong;Jung, Jae-Woong;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.193-199
    • /
    • 2017
  • In this study, changes of soil properties including soil texture, specific surface area, organic matter content, pH, cation exchange capacity and exchangeable cations content were investigated in response to strong acid or base accident. The properties changed significantly when the soil reacted with 10 M HCl or 1 M NaOH (i.e., when one gram of soil received 50 and 5 mmol of HCl or NaOH), respectively. When the soil reacted with 10 M HCl or 1 M NaOH solution, soil texture changed from sandy loam to loamy sand and specific surface areas decreased from $5.84m^2/g$ to 4.85 and $1.92m^2/g$, respectively. The soil organic matter content was reduced from 3.23% to 0.96 and 0.44%, and the soil pH changed from 5.05 to 2.35 and 10.65, respectively. The cation exchange capacity decreased from 10.27 cmol/kg to 4.52 and 5.60 cmol/kg, respectively. Especially, high concentrations of $Al^{3+}$ or $Na^+$ were observed in acidic or basic spills, respectively, which is likely to cause toxicity to terrestrial organisms. The results suggest that restoration of soil properties, as well as soil remediation, needs to be carried out to maintain the soil function in chemical spill sites.

Evaluation of the performance of encapsulated lifting system composting technology with a GORE(R) cover membrane: Physico-chemical properties and spectroscopic analysis

  • Al-Alawi, Mutaz;El Fels, Loubna;Benjreid, Ramadan;Szegi, Tamas;Hafidi, Mohamed;Simon, Barbara;Gulyas, Miklos
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.299-308
    • /
    • 2020
  • Composting is among the most effective integrated waste management strategies used to recycle sewage sludge (SS) waste and generate a useful product. An encapsulated lifting system is a relatively new industrial-scale composting technology. The objective of this study was to evaluate the effectiveness of composting dewatered stabilized SS mixed with green waste using this new technology. The composting process was monitored by changes in the physico-chemical properties, UV-visible spectra, and fourier transform infrared (FTIR) spectra. The composting temperature was steady in the thermophilic range for 24 and 12 d in the intensive and maturation phases, respectively, which fulfilled the disinfection requirement. Moreover, the temperature increased rapidly to 76.8℃ within three days, and the thermophilic temperatures peaked twice and lasted longer than in traditional composting, which accelerated SS degradation and decreased the composting period necessary to obtain mature compost. FTIR spectroscopic analysis showed a diminished in methyl group derived from methylene C-H aliphatic groups because of organic matter degradation by microorganisms and an increased number of aromatic chains. The new technology may be a viable and sustainable alternative for SS management that converts waste into compost that is useful as a soil amendment.

Effects of Green Tea Infusion on the Preneoplastic Lesions and Peroxidation in Rat Hepatocarcinogenesis

  • Kim, Hee-Seon;Kim, Hyung-Sook;Park, Haymie
    • Korean Journal of Community Nutrition
    • /
    • v.2 no.5
    • /
    • pp.735-744
    • /
    • 1997
  • The effect of green tea drinking on the hepatocellular chemical cacinogenesis have been studied. Placental glutathione S-transferase(GST-P) positive foci area in a liver tissue, contents of thiobarbituric acid reactive substances(TBARS), total cytochrome P450 and glucose 6-phospphatase(G6P) activity in hepatic microsomes were investigated. Weaning Sprague-Dawley male rats were fed AIN-76A diet with deionized water or green tea infusion, Rats of CTR and CTR+ groups were provided deionized water while GTI and GTI+ groups were provided green tea instead of deionized water for the entire experimental period of 13weeks. Rats of GTP and GTP + groups had deionized water for the first 6 weeks and switched to green tea for the last 7weeks of the experimental period. CTR+, GTI +, and GTP + groups were carcinogen treated groups, Diethylnitrosamine(DEN) was injected as a single dose of 200mg/kg body weight intraperitoneally after 4 weeks of feeding. 2-Acetyla-minofluorene(AAF) was used as a carcinogen proliferater and suppled in the diets of carcinogen treated rats as 0.02% content for the last 6weeks starting from 2weeks after DEN injection. Rats were sacrificed after 13week weeks of feeding. The area and number of GST-P positive foci detected in carcinogen treated rats were decreased by green tea ingestion but when timing and duration of green tea ingestion was delayed after promotion period as in GTP + group, GST-P positive foci were not decreased as much as in GTI+ group. TBARS contents of carcinogen treated rats decreased by 13weeks of green tea ingestion but GTP groups did not show statiscally significant differences. G6P activities tended to decrease by carcinogen treatment but changes were not statiscally significant by green tea ingestion. Total cytochrome P450 contents were increased by carcinogen treatment. Thirteen weeks of green tea ingestion (GTI) also increased to total cytochrome P450 contents while 7weeks of green tea ingestion(GTP) did show any effects. These results suggest that green tea has suppressive effects on hepatocellular chemical carcinogenesis probably through the activities of antioxidant compounds. (Korean J Community utrition 2(5) : 735∼744, 1997)

  • PDF

Effect of Hot Water Boiling and Autoclaving on Physicochemical Properties of American Ginseng (Panax quinquefolium L.)

  • Kim, Kyung-Tack;Yoo, Kyung-Mi
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2009
  • This study evaluates changes in the chemical composition and bioactivities of American ginseng (Panax quinquefolius L.) processed by boiling in water, $75^{\circ}C$ for 10, 20, 30, and 40 min, and autoclaving at high temperatures, $115^{\circ}C$ for 30 and 60 min and $130^{\circ}C$ for 90 and 120 min. Total ginsenoside contents of boiled ginseng remained relatively unchanged, whereas the contents of autoclaved ginseng samples significantly decreased with an increase of both time and temperature. Compared to unheated ginseng (control), the color of both boiled and autoclaved ginseng decreased in lightness and increased in redness. The acidic polysaccharide contents, the total phenolic contents and the antioxidant capacity of boiled and autoclaved ginseng were higher than the untreated ginseng, with the highest values being exhibited by the autoclaved samples. In particular, the antioxidant capacity of unheated ginseng increased about 2.5 times ($285.7{\pm}14.03\;mg$/100g to $777.2{\pm}26.4\;mg$/100g) when ginseng was autoclaved at $130^{\circ}C$ for 120 min as compared to the control. It was concluded that as American ginseng was processed at a high temperature, especially steam-heated in an autoclave, its chemical constituents changed and, in particular, acidic polysaccharides, total phenolics and antioxidant capacity were considerably increased.

Characterization of Synthetic Polyamides by MALDI-TOF Mass Spectrometry

  • Choi, Hae-Young;Choe, Eun-Kyung;Yang, Eun-Kyung;Jang, Sung-Woo;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2354-2358
    • /
    • 2007
  • MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.

Analysis of Various Ecological Parameters from Molecular to Community Levels for Ecological Health Assessments (생태 건강성 평가로서 분자지표에서 군집지표 수준까지의 다양한 변수분석)

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.24-34
    • /
    • 2010
  • This study was carried out to analyze some influences on ecological health conditions, threaten by various stressors such as physical, chemical and biological parameters. We collected samples in 2008 from three zones of upstream, midstream and downstream, Gap Stream. We applied multi-metric fish assessment index (MFAI), based on biotic integrity model to the three zones along with habitat evaluations based on Qualitative Habitat Evaluation Index (QHEI). We also examined fish fauna and compositions, and analyzed relations with MFAI values, QHEI values, and various guild types. Chemical parameters such as oragnic matter (BOD, COD), nutrients (TP, $NH_3$-N), coli-form number (as MPN), and suspended solids (SS) were analyzed to identify the relationship among multiple stressor effects. Using the sentinel species of Zacco platypus, the population structures and condition factors were analyzed along with DNA damages related with genotoxicant effects by comet assay. This study using all these parameters showed that stream condition was degraded along the longitudinal gradient from upstream to downstream, and the downstream, especially, was impacted by nutrient enrichment and toxicant exposure from the point source, wastewater treatment plant. Overall results indicated that our approaches applying various parameters may be used as a cause-effect technique in the stream health assessments and also used as a pre-warning tool for diagnosis of ecological degradation.

A Molecular Biotechnology For Removal of Toxic Heavy Metals

  • Bang Sang-Weon;Clark Douglas S.;Keasling Jay D.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.128-135
    • /
    • 2000
  • The thiosulfate reductase gene (PhsABC) from Salmonella typhimurium was expressed in Escherichia coli in order to produce sulfide from inorganic thiosulfate and precipitate metals as metal sulfide complexes. A 5.1-kb DNA fragment containing the native phsABC and a 3.7-kb DNA fragment, excluding putative promoter and regulatory regions were inserted into expression vectors pTrc99A and pJB866, respectively. Upon expression of phsABC, E. coli DH5$\alpha$ harboring the phsABC constructs showed higher thiosulfate reductase activity and produced significantly more sulfide than the control strain (E. coli DH5$\alpha$) under both aerobic and anaerobic conditions. Among the four constructs, E. coli DH5$\alpha$ harboring pSB74 produced the highest level of thiosulfate reductase and removed most of heavy metals from solution under anaerobic conditions. In a mixture of 100 $\mu$M each of cadmium, lead, and zinc, the strain could remove $99\%$ of the total metals from solution within 10 hours. Cadmium was removed first, lead second, and zinc last. In contrast, a negative control did not produce any measurable sulfide and removed very little metals from solution. These results have important implications for removal of metals from wastewater contaminated with several metals.

  • PDF

Distributions of Endangered Fish Species and Their Relations to Chemical Water Quality-Ecological Stream Health in Geum-River Watershed (금강 대권역 대표 멸종위기 담수어류의 분포 특성 및 이화학적 수질-하천 생태건강도와의 관계분석)

  • Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.986-995
    • /
    • 2016
  • The objective of this study was to analyze the distribution of endangered fish species and elucidate their relations on chemical water quality, physical habitat conditions and ecological stream health. The dominant species in the watershed was Pseudopungtungia nigra (Pn), Gobiobotia macrocephala (Gm), Gobiobotia brevibarba (Gb), Liobagrus obesus (Lo), and Iksookimia choii (Ic) in the order. The species of Pn designated as "critical endangered species (I) (CER)", was most widely distributed species among the endangered species, so the designation of the species should be re-evaluated. The endangered species was most popular (4 species, 384 individuals) in the Cho-River region of eighteen lotic regions. According to the analysis of chemical tolerance limits in the habitats with endangered fish species, biological oxygen demand (BOD) and total phosphorus (TP) was analyzed as "very good" (Ia) and "good condition" in the chemical criteria of the Ministry of Environment, Korea. Also, chemical conditions, based on ammonia-N ($NH_{4+}$), total nitrogen (TN), phosphate-P ($PO_{4^-}P$) were much better in the habitat with endangered species (Hw) than the habitat without endangered species (Ho). In the meantime, the species of Ic showed wide ranges on the chemical tolerance, so physical habitat conditions, such as the size of substrate particles (sand) and hydrological regime, were considered as more important factors than the chemical water quality, if the water quality is not largely degraded. The endangered species were also more distributed in the high-order (4-6) streams than the low-order (1-3) streams. The evaluation of ecological stream health, based on multi-metric model of the Index of Biological Integrity (IBI), showed the large difference between the Hw (21.6, fair condition)and Ho (30.5, good condition), indicating that the habitat maintained well chemically and physically had higher distributions of endangered species. Overall, the designation of CER on the Pn should be re-evaluated due to wide-distributions, and the protections from water pollution and the habitat conservations on the endangered species are necessary in the watershed.