• Title/Summary/Keyword: chemical ecology

Search Result 518, Processing Time 0.028 seconds

Total Mercury Contents in the Tissues of Zacco platypus and Ecological Health Assessments in Association with Stream Habitat Characteristics (하천 서식지 특성에 따른 피라미(Zacco platypus)의 총수은 함량 및 생태 건강성 분석)

  • Lee, Eui-Haeng;Yoon, Sang-Hun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.188-197
    • /
    • 2008
  • This research was a preliminary case study to determine the levels of total mercury in the tissues of sentinel species (Zacco platypus) and ecological health in relation to habitat characteristics and chemical conditions. We collected fishes in Gap Stream during June$\sim$October 2007 and analyzed the total mercury from five types of tissues such as liver, kidney, gill, vertebrae and muscle of Zaceo platypus using Direct Mercury Analyzer (DMA-80, US EPA Method 7473). Mean concentrations of total [Hg], based on all tissues, was 67.2 and $20.7\;{\mu}g\;kg^{-1}$, in the upstream and downstream site, respectively, indicating 3 times greater level in the upstream. In other words, the levels were higher in the pristine upstream than the downstream influenced by the wastewater disposal plant. Chemical water quality, based on BOD, COD and nutrients (TN, TP) showed that severe degradation occurred in the downstreams than the upstreams. Index of Biological Integrity (IBI) using fish multi-metric model averaged 32, indicating a "good$\sim$fair" condition and varied from 42 (excellent$\sim$good) at S2 to 22 (fair$\sim$poor) at S5 depending on the sites sampled. Qualitative Habitat Evaluation Index (QHEI) in the all sites averaged 142, which was judged as "good" habitat health, but showed a high variation (181 in Site 2 vs. 67 in Site 5). Overall data suggest that health conditions, based on IBI and QHEI, was better in the upstream sites but the mercury bioaccumulation levels in the fish tissues were opposite. We believe that measurements of various parameters are required for a diagnosis of integrative ecosystem health.

Comparative Analysis of Ecological Health Conditions Before and After Ecological Restoration in Changwon Stream and Nam Stream (창원천.남천에서 생태복원 전.후의 생태건강도 비교평가)

  • Kim, Hyun-Jeong;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • This study was to analyze the ecological conditions, based on physical habitat, chemical, and biological conditions before (2006, 2007) and after ecological restoration (2009) in five sites of Changwon Stream (CS) and six sites of Nam Stream (NS), respectively, and then to compare ecological health between the two period. The analysis of ecological health was based on the multimetric models of Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) along with water chemistry in the streams. For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. For the evaluations, the survey was conducted in the period of 2006~2007 before the restoration and in 2009 after the restoration by the city. Chemical conditions, based on conductivity, in both streams showed a typical longitudinal declines along the axis of the upstream-to-downstream. There were no significant differences (p>0.05) in water quality between the two periods. Values of IBI in the CS and NS averaged 21.6 and 19.7, respectively, indicating a C grade in the criteria of Ministry of Environment, Korea, and there was no significant differences in the IBI between the two periods. Values of QHEI after the restoration averaged 29.2 and 63.2 in the CS and NS, respectively and the values decreased markedly especially, in the NS (35.3) after the restoration. The habitat disturbance was mainly attributed to destructions (i.e., the narrower width of riparian vegetation and higher substrate exposure by the air) of artificial materials by massive flood in 2009. Overall, our results suggest that the restoration was not effective in the two streams between the two periods, even if the budget was used a lot and that such ecological restoration, not considered the natural disaster, may not effect for the stream restoration.

Evaluations of Ecological Habitat, Chemical Water Quality, and Fish Multi-Metric Model in Hyeongsan River Watershed (형산강 수계의 생태 서식지, 화학적 수질 및 어류의 다변수모델 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.279-287
    • /
    • 2010
  • This study was to evaluate ecological conditions of Hyeongsan River watershed from April to September 2009. The ecological health assessments was based on Qualitative Habitat Evaluation Index (QHEI), water chemistry during 2000~2009, and the fish multi-metric model, Index of Biological Integrity (IBI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. Values of IBI averaged 25.4 (n=6), which is judged as a "fair" condition (C) after the criteria of Barbour et al. (1999). The distinct spatial variation was found in the IBI. Physical habitat health, based on the values of QHEI, varied from 76 in the downriver (H6) to 150.5 in the headwater (H1) and was evidently more disturbed in the downriver reach. Values of BOD and COD averaged 2.4 $mgL^{-1}$ (range: 0.3~13.8 $mgL^{-1}$) and 4.3 $mgL^{-1}$ (scope: 0.6~12.8 $mgL^{-1}$), respectively during the study period. Total nitrogen (TN) and total phosphorus (TP) averaged 3.0 $mgL^{-1}$ and 103.5 ${\mu}gL^{-1}$, respectively, indicating a severe eutrophication, and the nutrients increased more in the downriver than the headwater. Overall, physical, chemical and IBI parameters showed a typical downriver degradation along main axis of the river from the headwater-to-the downriver. This was mainly attributed to livestock waste and residential influences along with industrial discharge from the urban region.

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

Case Study of Hydrochemical Contamination by Antimony Waste Disposal in Korea (국내 안티몬폐기물에 의한 수질화학적 오염 사례연구)

  • Jeong, Chan-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.471-482
    • /
    • 2008
  • This study was carried out to investigate the contamination characteristics of surface water, soil water and groundwater around and in antimony waste landfill site in Wonsung-ri, Yeonki-kun, Chungnam. The waste disposed in the study was excavated and transported to the other site in several years ago. For this study, we collected 35 water samples including groundwater, soil water and surface in the study site and also collected 2 groundwater samples from a comparison site. The data of chemical analysis of soil water samples show the antimony concentration of $48.75{\sim}74.81\;ppb$, which is much higher than groundwater in a comparison site and is highly excess than regulation level for a drinking water of some advanced countries. A relatively high antimony concentration was detected in three stream water samples nearby landfill site and two groundwater samples. Fe and Mn contents in soil water and stream water were measured as maxium 6.5 mg/L and 7.3 mg/L, respectively. Although other heavy metals of water samples in the study site are higher concentration than water sample of comparison site, their absolute levels are lower than regulation level for a drinking water. The chemical data of water samples are plotted widely from Ca - $HCO_3$ type to Ca - ($Cl +SO_4+NO_3$) type. Some groundwater show high contents of potassium and nitrate, which would come from fertilizer and sewage. Conclusively, some heavy metals including antimony have been still remained under the soil surface of the landfill site in the past. These metals have leaked out into nearby stream and groundwater system, and threaten the ecology, crops and the health of residents in this site. Therefore, the government have to prepare the strategy to prevent the diffusion of heavy metals into aquatic environment and have to process the reclamation work for contaminated site. It is also necessary to make a regulation level of the antimony concentration for a drinking water and soil environment in Korea.

Seasonal Variations of Nitrifying Bacteria in Agricultural Reservoir (농업용 저수지에서의 질화세균의 계절적인 변화)

  • Lee, Hee-Soon;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.152-159
    • /
    • 2002
  • The seasonal variations of nitrifying bacterial population sampled from 3 sites in Moon-Chon reservoir were analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes from August 2000 until July 2001. In addition, physico-chemical parameters such as temperature, pH, chi-a and DOC were measured to determine correlations between those factors and the size of nitrifying bacterial populations. Total bacterial numbers varied in the range of $0.8{\sim}1.5{\times}10^6\;cells/ml$ independent of sites and had the maximal values in March at all 3 stations. The ratio of eubacteria to total bacteria ranged from 44.9% to 79.5%, and the ratio of each nitrifying bacteria to eubacterial numbers reached only $1.0{\sim}7.4%$. The variations of ammonia-oxidizing bacteria ranged from $1.1{\times}10^4$ to $3.0{\times}10^4\;cells/ml$ without noticeable peak values whereas those of nitrite-oxidizing bacteria varied in $1.3{\sim}5.7{\times}10^4\;cells/ml$ with the increasing tendency in winter regardless of the sites. Moreover it was observed that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria. Total bacterial numbers correlated with water temperature (r = 0.355, p<0.05) and DOC (r = 0.58G, p<0.01) positively whereas nitrite-oxidizing bacteria correlated with temperature (r = -0.416, p<0.05) and pH (r = -0.568, p = 0.001) negatively. In addition, DOC represented good correlations with eubacterial numbers (r = 0.448, p<0.01). These results indicate that temperature, DOC and pH might be one of the main factors affecting variations of bacterial populations in the aquatic ecosystem. It was also suggested that FISH method is a useful tool for detection of slow growing nitrifying bacteria.

Comparative Study on the Composition of Floral Volatile Components in the Flowering Stages of Robinia pseudoacacia L. (아까시나무(Robinia pseudoacacia L.) 꽃의 개화 단계별 향기성분 조성 비교)

  • Jung, Je Won;Lee, Hyun Sook;Noh, Gwang Rae;Lee, Andosung;Kim, Moon Sup;Kim, Sea Hyun;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • Floral scent emitted from many plants is the critical factors for pollinator attraction and defense for adaptation in environments. The fragrance components of flowers are different in composition by geographical origins, climate factors and the development stages of flowers. In the present study, we investigated the volatile-floral compounds in flowers of Robinia pseudoacacia L. and defined the chemical contribution for flowering periods. The volatile compounds analysis was performed by gas chromatography with mass selective detector after solid phase microextraction (SPME). We reported different compositional features of fragrance compounds according to flowering periods. The abundant compounds identified in stage 1 were ${\alpha}$-pinene (66.80%) and ${\beta}$-pinene (26.53%). Those of the stage 2 were (Z)-${\beta}$-ocimene (37.57%), ${\alpha}$-pinene (15.16%), benzaldehyde (16.63%), linalool (12.13%). The volatiles of stage 3 comprised an abundance of (Z)-${\beta}$-ocimene (64.94%), ${\alpha}$-pinene (9.84%), linalool (8.92%), benzaldehyde (1.71%). Leaf volatiles were distinct from those in the reproductive plant parts by their high relative amount of (E)-${\beta}$-ocimene (23.50%) and (Z)-3-Hexenyl acetate (27.87%). Differences in flower scents of the different stages and leaves are discussed in light of biochemical constraints on volatile chemical synthesis and of the role of flower scent in evolutionary ecology of R. pseudoacacia.

The Study of Water Environment Variations in Lake Hwajinpo (화진포호의 수환경변화에 관한 연구)

  • Heo, Woo-Myung;Choi, Sang-Gyu;Kwak, Sung-Jin;Bhattrai, Bal Dev;Lee, Eun-Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.9-21
    • /
    • 2011
  • This study is conducted to know the change in water environment of Lake Hwajinpo from 2000 to 2008 with physico-chemical parameters; salinity, dissolved oxygen, total phosphorus and total nitrogen and others. And zooplanktons and phytoplanktons were studied from 2007 to 2008. From the water quality data of Lake Hwajinpo from 2000 to 200S; water temperature, salinity, transparency, chemical oxygen demand and dissolved oxygen ranges are $2.8{\sim}29.4^{\circ}C$, 0.23~33.2‰, $0.2{\sim}1.8\;m$, $0.2{\sim}20.2\;mg\;L^{-1}$ and $0.1{\sim}17.4\;mg\;L^{-1}$ and the average values are $18.0^{\circ}C$, 15.7‰, 0.7 m, $5.7\;mg\;L^{-1}$ and $8.0\;mg\;L^{-1}$, respectively. Total phosphorus (TP) and total nitrogen (TN) ranges are $0.024{\sim}0.869\;mg\;L^{-1}$ (average 0.091) and $0.240{\sim}5.310\;mg\;L^{-1}$ (average 1.235). Average TN/TP ratio is 16.4. The annual variations in COD, TP, TN and Chl.${\alpha}$ are compared. COD in 2000 is $4.83\;mg\;L^{-1}$ and 2008 is $1.80\;mg\;L^{-1}$ which is reduced by $0.34\;mg\;L^{-1}$ every year. TP in 2000 is $0.07\;mg\;L^{-1}$ and 2008 is $0.05\;mg\;L^{-1}$ reduced gradually. Yearly reduction in TN is $0.09\;mg\;L^{-1}$, in 2000 and 2008 the values are $1.54\;mg\;L^{-1}$ and $0.77\;mg\;L^{-1}$ respectivly. Chl.${\alpha}$ in 2000 is $46.30\;{\mu}g\;L^{-1}$ and $5.78\;{\mu}g\;L^{-1}$ in 2008; yearly reduction is $4.50\;{\mu}g\;L^{-1}$. The tropic state index (TSI) in south and north parts of Lake Hwajinpo in 2000 are 67 and 63 which are reduced to 63 and 59 in 2008 respectively. North and south part of Lake Hwajinpo have 67 species of phytoplankton under 47 families in 2007 and 2008. Dominant species in south part in 2007 are; Asterococcus superbus in May, Lyngbya sp. in September and Trachelomonas spp. in November and in 2008 Anabaena spiroides in August are abundant and varies with time. Zooplankton species in Lake Hwajinpo are 25 of 25 families. Dominant species in south part in May and August 2007 and May and November in 2008 Copepoda larvae and in September 2007 Protozoa spp. of Protozoan and Brachionus plicatilis and Brachionus urceolaris of Cladocera in August 2008. Dominant species in north part Asplanchna sp. of Cladecera in August and November 2007 and rest of the time are larvae of Copepoda. In this way, the water quality of Lake Hwajinpo is changing with slow rate in the long period specially nutrients concentration (TP, TN etc) is decreasing.

Water Quality and Chlorophyll-a at the Birth Stage of a Large Reclaimed Estuarine Lake in Korea (Lake Hwaong) (간척하구호 (화옹호) 태동기의 수질과 엽록소-a 변화)

  • Kim, Ho-Sub;Chung, Mi-Hee;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.455-462
    • /
    • 2003
  • This study evaluated the change of water quality and chlorophyll - a at the birth stage of a large reclaimed estuarine lake (Lake Hwaong) of which the dike was finally constructed in March, 2002. Physico -chemical parameters and chlorophyll - a were investigated along a longitudinal transect, including 3 in-lake sites and 1 out-lake site from June to November, 2002. Salinity at all in-lake sites was over 21 psu during the study period, indicating that lake is still in the seawater phase. Salinity was periodically diluted at times when precipitation was high, especially in August. Chemocline was established in July near the dam site, and correspondingly vertical profile of dissolved oxygen was very clear during that Period. Total nitrogen and phosphorus concentrations at all lake sites were in the eutrophic range, and they were especially high at the stream inlet site. Nutrients concentration was not much varied vertically but significantly varied temporally, and correlated significantly with precipitation and chlorophyll-a concentration, indicating that inflowing water from the watershed seemed not to improve lake water by dilution but cause eutrophication of the lake, and thereby stimulate phytoplankton development. Based on the analyses of nutrient ratio (N/P) and trophic state deviation, both phosphorus and nitrogen appeared to limit phytoplankton growth in the lake. Phosphorus limitation appeared to be probable at all in-lake sites with being most severe at the stream inlet site. Nitrogen limitation seemed to occur at both in-lake and out-lake sites. These results indicate that in Lake Hwaong experiencing the very early stage of a reclaiming lake, water quality and phytoplankton development appear to be affect-ed largely by salinity and hydrology and nutrients from the inflowing water. Lake biogeochemistry is still very unstable, and thus further long-term study is necessary to understand the effects of seawater to freshwater conversion on lake biology and water chemistry.

The Limnological Survey of a Coastal Lagoon in Korea (2): Lake Hyangho (동해안 석호의 육수학적 조사(2): 향호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.1-11
    • /
    • 2004
  • The limnological characteristics of a coastal lagoon were studied in Lake Hyangho, one of a series of brackish lagoons along the eastern coast of Korea. Phytoplankton community structure, physical factors, and chemical factors were surveyed from May 1998 through November 2002 on a two-month interval basis. Temperature, salinity, Secchi disc transparency, TN, TP, organic matter content of sediment, chlorophyll a concentration, dominant phytoplankton species, and phytoplankton cell density were measured. Salinity gradient was formed between the overlying freshwater stream water and the permeated seawater at the bottom. The chemocline was persistent at the depth of 2 ${\sim}$ 5 m that caused discontinuities of salinity, DO, and temperature profiles. The inversion of vertical temperature profiles with higher temperature in deeper layer was observed in early winter. Secchi disc transparency was very low with the range of 0.1 to 1.1m. TP, TN, and Chl. a concentration in the epilimnion was 0.011 ${\sim}$ 0.238 mgP $L^{-l}$, 0.423 ${\sim}$ 2.443 mgN $L^{-l}$, and 0.7 ${\sim}$ 145.2 mg $m^{-3}$, respectively. Sediment was composed of silt and coarse silt. COD, TP, and TN content of dry sediment were 19.7 ${\sim}$ 73.3 mg$O_2\;g^{-1}$, 0.61 ${\sim}$ 1.32 mgP $g^{-l}$ and 0.64 ${\sim}$ 0.88 mgN $g^{-l}$, respectively. Dominant phytoplankton species were chlorophytes (Ankistrodesmus falcatus) and cyanobacteria (Oscillatoria sp. and Merismopedia tennuissima). The total cell density was in the range of 560 ${\sim}$ 35,255 cells $mL^{-l}$.