Browse > Article

The Study of Water Environment Variations in Lake Hwajinpo  

Heo, Woo-Myung (Department of Environmental Engineering, Kangwon National University)
Choi, Sang-Gyu (Department of Environmental Engineering, Kangwon National University)
Kwak, Sung-Jin (Department of Environmental Engineering, Kangwon National University)
Bhattrai, Bal Dev (Department of Environmental Engineering, Kangwon National University)
Lee, Eun-Joo (Institute of Korean Algaetech)
Publication Information
Abstract
This study is conducted to know the change in water environment of Lake Hwajinpo from 2000 to 2008 with physico-chemical parameters; salinity, dissolved oxygen, total phosphorus and total nitrogen and others. And zooplanktons and phytoplanktons were studied from 2007 to 2008. From the water quality data of Lake Hwajinpo from 2000 to 200S; water temperature, salinity, transparency, chemical oxygen demand and dissolved oxygen ranges are $2.8{\sim}29.4^{\circ}C$, 0.23~33.2‰, $0.2{\sim}1.8\;m$, $0.2{\sim}20.2\;mg\;L^{-1}$ and $0.1{\sim}17.4\;mg\;L^{-1}$ and the average values are $18.0^{\circ}C$, 15.7‰, 0.7 m, $5.7\;mg\;L^{-1}$ and $8.0\;mg\;L^{-1}$, respectively. Total phosphorus (TP) and total nitrogen (TN) ranges are $0.024{\sim}0.869\;mg\;L^{-1}$ (average 0.091) and $0.240{\sim}5.310\;mg\;L^{-1}$ (average 1.235). Average TN/TP ratio is 16.4. The annual variations in COD, TP, TN and Chl.${\alpha}$ are compared. COD in 2000 is $4.83\;mg\;L^{-1}$ and 2008 is $1.80\;mg\;L^{-1}$ which is reduced by $0.34\;mg\;L^{-1}$ every year. TP in 2000 is $0.07\;mg\;L^{-1}$ and 2008 is $0.05\;mg\;L^{-1}$ reduced gradually. Yearly reduction in TN is $0.09\;mg\;L^{-1}$, in 2000 and 2008 the values are $1.54\;mg\;L^{-1}$ and $0.77\;mg\;L^{-1}$ respectivly. Chl.${\alpha}$ in 2000 is $46.30\;{\mu}g\;L^{-1}$ and $5.78\;{\mu}g\;L^{-1}$ in 2008; yearly reduction is $4.50\;{\mu}g\;L^{-1}$. The tropic state index (TSI) in south and north parts of Lake Hwajinpo in 2000 are 67 and 63 which are reduced to 63 and 59 in 2008 respectively. North and south part of Lake Hwajinpo have 67 species of phytoplankton under 47 families in 2007 and 2008. Dominant species in south part in 2007 are; Asterococcus superbus in May, Lyngbya sp. in September and Trachelomonas spp. in November and in 2008 Anabaena spiroides in August are abundant and varies with time. Zooplankton species in Lake Hwajinpo are 25 of 25 families. Dominant species in south part in May and August 2007 and May and November in 2008 Copepoda larvae and in September 2007 Protozoa spp. of Protozoan and Brachionus plicatilis and Brachionus urceolaris of Cladocera in August 2008. Dominant species in north part Asplanchna sp. of Cladecera in August and November 2007 and rest of the time are larvae of Copepoda. In this way, the water quality of Lake Hwajinpo is changing with slow rate in the long period specially nutrients concentration (TP, TN etc) is decreasing.
Keywords
Lake Hwajinpo; brackish lagoon; nutrients; TSI;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Orive, E., M. Elliott and V.N. de Jonge. 2002. Nutrients and eutrophication in estuaries and coastal waters. Kluwer Academic Publishers, Dordrecht.
2 Osamu, M. and K.S. Cho. 1984. Urea, DOC, DON, and DOP in two brackish lagoons on the eastern coast of Korea. Korean Journal of Limnology 17: 73-80.
3 Sawyer, C.N. 1947. Fertilisation of lakes by agricultural and industrial drainage. New England Water Works Association 61: 109-127.
4 Schindler, D.W. 1978. Factors regulating phytoplankton production and standing crop in the world's freshwater. Limnology Oceanography 23: 478-486.   DOI   ScienceOn
5 Schroeder, W.W., S.P. Dinnel and W.J.W. Wiseman. 1990. Salinity stratification in a river-dominated estuary. Estuaries 13(2): 145-154.   DOI   ScienceOn
6 Shannon, C. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, p. 29-125.
7 Smith, N.P. 1990. Wind domination of residual tidal transport in a coastal lagoon, p. 123-133. In: Residual Currents and Longterm Transport (Cheng, R.T. ed.). Springer-Verlag, New York.
8 Smith, V.H. 1982. The nitrogen and phosphorus dependence of al gal biomass in lakes: An empirical and theoretical analysis. Limnology Oceanography 27: 1101-1112.   DOI   ScienceOn
9 Sukhanova, I.N. 1978. Settling without the inverted microscope. 'Phytoplankton Manual', UNESCO.
10 홍사욱, 조규송, 나규환. 1969. 화진포의 수질과 Plankton에 관한 연구. 한국육수학회지 2: 35-42.
11 汽水域の河川環境の捉え方に關する檢討會. 2004. 汽水域の 河川環境の捉え方に關する手引書.
12 APHA (America Public Health Association). 1992. Standard Methods for the Examination of Water and Wastewater 18th ed, Washington D.C.
13 APHA∙AWWA∙WPCF. 1989. Standard Method for the Examination of Water and Wastewater 17th ed. APHA, N.Y.
14 Carlson, R.E. 1977. A trophic state index for lakes. Limnology Oceanography 22: 361-369.   DOI   ScienceOn
15 Chihara, M. and M. Masaaki. 1997. An Illustrated Guide to Marine Plankton in Japan. 1574 pp.
16 Diaz, R.J. and R. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and behavioural responses of macrofauna. Oceanography and Marine Biology: an Annual Review 33: 245-303.
17 Gray, J.S., R.S.S. Wu and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249-279.   DOI
18 Havens, K.E. 2000. Using Trophic State Index (TSI) values to draw inferences regrding phytoplankton limiting factors and seston composition from routine water quality monitoring data. Korean Journal of Limnology 33(3): 187-196.
19 Hecky, R.E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments; A review of recent evidence on the effects of enrichment. Limnology Oceanography 33: 796-822.   DOI   ScienceOn
20 Hirose, H. and T. Yamagishi. 1977. Illustration of the Japanese Fresh-water Algae. Uchidaroka-kuno Publishing Co., Japan.
21 Horne, A.J. and C.R. Goldman. 1994. Limnology. McGraw Hill College.
22 Kennish, M.J. 2000. Estuary Restoration and Maintenance. CRE Press, Florida.
23 Kramer, K.J., U.H. Brockmann and R.M. Warwick. 1994. Tidal estuaries: manual of sampling and analytical procedures. AA Balkema, Rotterdam.
24 Kratzer, C.R. and P.L. Brezonik. 1981. A Carlsontype trophic state index for nitrogen in Florida lakes. Water Resources Bulletin 17: 713-715.   DOI
25 엄규백. 1971. 호소에 있어서의 생산구조에 관한 연구. 식물학회지 14: 15-23.
26 엄정훈. 1998. 동해안 석호의 수질 및 퇴적물 특성과 주변 지역 변화에 관한 연구. 한국지리환경교육학회지 6(2): 95-110.
27 염종권, 유강민, Sampei, Y., Touoka, T., Nakamura, T. 2002. 동해안 화진포 석호의 최근 400년간 퇴적 환경 변화. 지질학회지 38(1): 21-32.
28 원주지방환경청. 1997. 동해안 석호 수질개선대책보고서.
29 원주지방환경청. 1998. 98동해안 석호 조사보고서.
30 원주지방환경청. 1999. 석호 연구 보고서.
31 원주지방환경청. 2002. 동해안 석호 수질 개선방안.
32 원주지방환경청. 2003. 석호연구보고서(III).
33 원주지방환경청. 2004. 제3회 석호 심포지엄, 환경의 날 기념.
34 원주지방환경청. 2005. 동해안 10개 석호 조사 보고서.
35 원주지방환경청. 2006. 석호 수질연보.
36 원주지방환경청. 2007. 동해안 석호 생태계 보전 및 복원을 위한 생태계 정밀조사연구 및 관리방안 연구 보고서.
37 원주지방환경청. 2008. 동해안 석호 생태계 보전 및 복원을 위한 생태계 정밀조사연구 및 관리방안(II) 연구 보고서.
38 원주지방환경청. 2009. 동해안 석호 생태계 보전 및 복원을 위한 생태계 정밀조사연구 및 관리방안(II) 연구 보고서.
39 원주지방환경청. 2010. 동해안 석호 지킴이 워크숍.
40 전상호, 전방욱, 유성환. 1996. 동해안 자연 호수의 수질 조사(강릉경실련) 동해안 호수 보존 심포지움, 강릉, p. 83-118.
41 조규송, 홍사욱, 나규환. 1975. 동해안 기수호군의 육수조건과 Plankton상의 비교 연구. 한국육수학회지 8: 25-37.
42 최광순, 김세원, 김동섭, 오영택, 허우명, 이윤경, 박용순. 2008. 해수유통이 제한된 시화호 기수역에서 염분도, 수온, 용존 산소, 탁도의 시공간적 분포특성. 한국하천호수학회지 41(2): 216-227.
43 편충규. 1984. 기수호(향호.매호.영랑호.송지호.화진포)의 환경 및 생물상 조사 보고. 제주대학교논문집 18: 93-105.
44 허우명, 김범철, 전만식. 1999. 동해안 석호의 부영양화 평가. 한국육수학회지 32(2): 141-151.
45 허우명, 권상용, 이재일, 김동진, 김범철. 2004. 동해안 석호의 육수학적 조사(3): 화진포호. 한국육수학회지 37(1): 12-25.
46 홍사욱, 나규환. 1975. 동해안기수호의 육수학적 연구. 성대논문집 20: 7-95.
47 Tsutsumi, H. 2006. Critical events in the Ariake Bay ecosystem: Clam population collapse, red tides, and hypoxic bottom water. Plankton and Benthos Research 1(1): 3-25.   DOI   ScienceOn
48 권상용. 2002. 화진포호의 육수생태학적 연구. 삼척대학교 공학석사 학위논문.
49 김종만, 이순길, 허성범, 김동엽, 이재학, 이진환, 허형택. 1981. 동해안 기수호(향호, 송지호, 영랑호)의 해양생태학적 연구. Bulletin of KORDI 3: 29-38.
50 신재기, 김동섭, 조경제. 2000. 시화호에서 해수유입 전.후의 수환경 요인과 식물플랑크톤 동태. 한국환경과학회지 9(2): 109-117.
51 Ueda, N., H. Tsutsumi, M. Yamada, K. Hanamoto and S. Montani. 2000. Impact of oxygen-deficient water on the macrobethic animals in the innermost areas of Dokai Bay and on the mud flats adjacent to the bay, in Kitakyushu, Japan. Marine Pollution Bulletin 40: 906-913.   DOI   ScienceOn
52 Uncles, R.J., J.E. Ong and W.K. Gong. 1990. Observations and analysis of a stratification-destratification event in a tropical estuary Estuarine. Coastal and Shelf Science 31: 651-665.   DOI
53 U.S. EPA. 1976. Water Quality Criteria Research of the U.S. Environmental Protection Agency, Proceeding of an EPA Sponsored Symposium, EPA-600 (3-76-079): 185.
54 Wetzel, R.G. 2001. Limnology. 3th ed., Academic Press, New York.
55 Mizuno, T. 1964. Illustrations of the Freshwater Plankton of Japan. Hoikusa Publishing Co., LTD.
56 Likens, G.E. 1975. Primary production of inland aquatic ecosystem, p. 185-202. In: Primary Productivity of the Biosphere (Lieth, H. and R.H. Whittaker, eds.). Springer Verlag, New York.
57 Lorenzen, C.J. 1967. Determination of chrolophyll and pheo-pigments: Spectophotomentric equation. Limnology Oceanography 12: 343-346.   DOI   ScienceOn
58 McLusky, D.S. and M. Elliott. 2004. The Estuarine Ecosystem Ecology, Threats, and Management. Oxford University Press.
59 Mizuno, T. and K.S. Cho. 1980. Paleolimnological study from the present status of the lake hwajin-po and yeong-rang. Korean Journal of Limnology 13: 17-22.
60 OECD. 1982. Eutrophication of Waters: Monitoring, Assessment and Control. OECD, Paris, 154pp.