• Title/Summary/Keyword: chemical diversity

Search Result 257, Processing Time 0.025 seconds

Cation Ordering and Microwave Dielectric Properties of $Ba(Mg_{1/3}Nb_{2/3})O_3$ Ceramics: II. Local Order-Disorder Phase Transition and Second Phase formation ($Ba(Mg_{1/3}Nb_{2/3})O_3$세라믹스의 양이온 규칙구조와 유전특성: II. 국부적 규칙-불규칙 상전이와 이차상 생성 거동)

  • 김영웅;박재환;김긍호;김윤호;박재관
    • Korean Journal of Crystallography
    • /
    • v.12 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • We have studied the effect of sintering temperature and time on the cation ordering and second phase formation in Ba(Mg/sub 1/3/Nb/sub 2/3/)O₃(BMN) microwave ceramics by using transmission electron microscopy. The relationship between the structural-chemical behavior arid microwave dielectric properties has also been investigated. It is revealed that according to the sintering conditions the BMN ceramics show very diverse local ordering behavior, such as the development of domain twinning and "core-shell"-structured grains and the formation of local disordered domains, though having 1 : 2 cation ordering structure basically. The disordered structure is found in Mg-excess region. Such local chemical variation seems to be caused by the formation of BaNb₂O/sub 6/-like second phase in its neigh-boring grain boundary. The microwave dielectric quality factor of the ceramics decreases greatly with the increase of the structural-chemical inhomogeneity and diversity.

  • PDF

Solid-phase Parallel Synthesis of a Novel N-[Alkylsulfonamido-spiro(2H-1-benzopyran-2,4-piperidine)-6-yl] substituted Amide and Amine Drug-like Libraries

  • Kim, Ji-Hye;Gong, Young-Dae;Lee, Gee-Hyung;Seo, Jin-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.128-136
    • /
    • 2012
  • We report the solid-phase library construction of 222 number of a novel N-[alkyl sulfonamido-spiro(2H-1-benzopyran-2,4-piperidine)-6-yl] substituted amide 1A and amine 1B derivatives. The polymer-bound N-[alkylsulfonamido-spiro(2H-1-benzopyran-2,4-piperidine)-6-yl] substituted amide 9 and amine 10 derivatives were obtained by first diversity generation with various acid chlorides and alkyl halides. Further reactions on the resins 9 and 10 with substituted sulfonyl chlorides produced the desired N-[alkylsulfonamido-spiro(2H-1-benzopyran-2,4-piperidine)-6-yl] substituted amide 1A and amine 1B analogues.

The development of automatic system using multimodel in hazard analysis (위험성 분석에서의 다중모델을 이용한 자동화 시스템의 개발)

  • Kang Kyung Wook;Kang Byung Kwan;Suh Jung Chul;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 1997
  • There are many kinds of complicated equipments in the chemical plants. So the chemical plants have high possibility of accidents. Hazard analysis is one of the basic tasks to ensure the safety of chemical plants. However, it has many shortcomings. To overcome the problems, there have been attempts to automate this work by utilizing computer technology, particularly knowledge-based technique. However, many of the past approaches are lacking in properties: safeguard consideration, accident diversity, cause and consequence diversity, pathway leading to accidents, and various hazard analysis reasoning. Therefore, in this study, three analysis algorithms were proposed using multimodel approach, and a hazard analysis system, AHA, was developed on G2. The case study was solved with AHA system successfully.

  • PDF

Microbial composition and diversity of the long term application of organic material in upland soil

  • An, Nan-Hee;Park, Jong-Ho;Han, Eun-Jung;Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.190-193
    • /
    • 2011
  • Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and culture-independent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK +pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.

Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

  • Chang, Fan;Jia, Fengan;Lv, Rui;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

Multi-metric Index Assessments of Fish Model and Comparative Analysis of Community (남한강 상류 수계에서 어류의 다변수 모델 지수 산정 및 군집지수와의 비교평가)

  • Lee, Jae-Hoon;Hong, Young-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.327-336
    • /
    • 2007
  • This study assessed ecological health using a multi-metric fish model from 15 sites in the headwater watershed of southern Han River during June${\sim}$August 1999 and then compared the health with conventional community diversity index to figure out differences between health and diversity index. For the analysis, we adopted 10 metric IBI model for regional applications. During this survey, total number of species sampled were 24 (6 families) and varied depending on magnitude of ecological disturbance and stream order. In the mountainous streams, mean proportion of sensitive and insectivore species was composed of 91% and 56%, respectively, indicating a potential healthy conditions. However, tolerant species with 66% and omnivore species with 76% were sampled from the 2nd order stream, which was shown deterioration in the physical habitat quality. In the overall watershed, mean IBI value was 38, judging as "fair" condition by the health criteria. Values of Individual IBI were closely associated with stream order and this pattern was similar to other mountainous streams showing low chemical pollutions and disturbance. Our comparison between IBI and diversity index over the stream order showed a distinct difference; Shannon-Weaver diversity index overestimated the actual community conditions and the variation range in the 2nd order stream was greater in the diversity index. Overall data suggest that the multi-metric approach may to a useful tool for stream ecosystem management and the conventional diversity index may not effective unless the stream order is considered for the stream evaluation.

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C.;Chauhan, Puneet S.;Woo, Sung-Man;Hong, Bo-Hee;Park, Kee-Woong;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.146-159
    • /
    • 2011
  • The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Diversity and Chemical Defense Role of Culturable Non-Actinobacterial Bacteria Isolated from the South China Sea Gorgonians

  • Jiang, Peng;Zhang, Xiaoyong;Xu, Xinya;He, Fei;Qi, Shuhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • The diversity of culturable non-actinobacterial (NA) bacteria associated with four species of South China Sea gorgonians was investigated using culture-dependent methods followed by analysis of the bacterial 16S rDNA sequence. A total of 76 bacterial isolates were recovered and identified, which belonged to 21 species of 7 genera, and Bacillus was the most diverse genus. Fifty-one percent of the 76 isolates displayed antibacterial activities, and most of them belonged to the Bacillus genus. From the culture broth of gorgonian-associated Bacillus methylotrophicus SCSGAB0092 isolated from gorgonian Melitodes squamata, 11 antimicrobial lipopeptides including seven surfactins and four iturins were obtained. These results imply that Bacillus strains associated with gorgonians play roles in coral defense mechanisms through producing antimicrobial substances. This study, for the first time, compares the diversity of culturable NA bacterial communities among four species of South China Sea gorgonians and investigates the secondary metabolites of gorgonian-associated B. methylotrophicus SCSGAB0092.

Diversity and Distribution of Methanogenic Archaea in an Anaerobic Baffled Reactor (ABR) Treating Sugar Refinery Wastewater

  • Li, Jianzheng;Zhang, Liguo;Ban, Qiaoying;Jha, Ajay Kumar;Xu, Yiping
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • The diversity and distribution of methanogenic archaea in a four-compartment anaerobic baffled reactor (ABR) treating sugar refinery wastewater were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At an organic loading rate of 5.33 kg $COD/m^3{\cdot}day$, the ABR could perform steadily with the mean chemical oxygen demand (COD) removal of 94.8% and the specific $CH_4$ yield of 0.21 l/g $COD_{removed}$. The $CH_4$ content in the biogas was increased along the compartments, whereas the percentage of $H_2$ was decreased, indicating the distribution characteristics of the methanogens occurred longitudinally down the ABR. A high phylogenetic and ecological diversity of methanogens was found in the ABR, and all the detected methanogens were classified into six groups, including Methanomicrobiales, Methanosarcinales, Methanobacteriales, Crenarchaeota, Arc I, and Unidentified. Among the methanogenic population, the acid-tolerant hydrogenotrophic methanogens including Methanoregula and Methanosphaerula dominated the first two compartments. In the last two compartments, the dominant methanogenic population was Methanosaeta, which was the major acetate oxidizer under methanogenic conditions and could promote the formation of granular sludge. The distribution of the hydrogenotrophic (acid-tolerant) and acetotrophic methanogens in sequence along the compartments allowed the ABR to perform more efficiently and steadily.