Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08010

Diversity and Chemical Defense Role of Culturable Non-Actinobacterial Bacteria Isolated from the South China Sea Gorgonians  

Jiang, Peng (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Zhang, Xiaoyong (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Xu, Xinya (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
He, Fei (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Qi, Shuhua (Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 437-443 More about this Journal
Abstract
The diversity of culturable non-actinobacterial (NA) bacteria associated with four species of South China Sea gorgonians was investigated using culture-dependent methods followed by analysis of the bacterial 16S rDNA sequence. A total of 76 bacterial isolates were recovered and identified, which belonged to 21 species of 7 genera, and Bacillus was the most diverse genus. Fifty-one percent of the 76 isolates displayed antibacterial activities, and most of them belonged to the Bacillus genus. From the culture broth of gorgonian-associated Bacillus methylotrophicus SCSGAB0092 isolated from gorgonian Melitodes squamata, 11 antimicrobial lipopeptides including seven surfactins and four iturins were obtained. These results imply that Bacillus strains associated with gorgonians play roles in coral defense mechanisms through producing antimicrobial substances. This study, for the first time, compares the diversity of culturable NA bacterial communities among four species of South China Sea gorgonians and investigates the secondary metabolites of gorgonian-associated B. methylotrophicus SCSGAB0092.
Keywords
Gorgonian-associated bacteria; diversity; Bacillus methylotrophicus; lipopeptides; antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gray, M. A., R. P. Stone, M. R. Mclaughlin, and C. A. Kellogg. 2011. Microbial consortia of gorgonian corals from the Aleutian islands. FEMS Microbiol. Ecol. 76: 109-120.   DOI   ScienceOn
2 Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698.   DOI   ScienceOn
3 Kanlayavattanakul, M. and N. Lourith. 2010. Lipopeptides in cosmetics. Int. J. Cosmet. Sci. 32: 1-8.   DOI   ScienceOn
4 Kracht, M., H. Rokos, M. Ozel, M. Kowall, G. Pauli, and J. Vater. 1999. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. 52: 613-619.   DOI
5 Mireles II, J. R., A. Toguchi, and R. M. Harshey. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183: 5848-5854.   DOI   ScienceOn
6 Lau, S. C. K., V. Thiyagarajan, and P. Y. Qian. 2003. The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. J. Exp. Mar. Biol. Ecol. 282: 43-60.   DOI   ScienceOn
7 Leclere, V., M. Bechet, A. Adam, J. S. Guez, B. Wathelet, M. Ongena, et al. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71: 4577-4584.   DOI   ScienceOn
8 Li, X. and B. S. H. De. 1995. Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85: 837-842.   DOI   ScienceOn
9 Mizumoto, S., M. Hirai, and M. Shoda. 2007. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl. Microbiol. Biotechnol. 75: 1267-1274.   DOI   ScienceOn
10 Mulligan, C. N. 2009. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 14: 372-378.   DOI   ScienceOn
11 Chen, H., L. Wang, C. X. Su, G. H. Gong, P. Wang, and Z. L. Yu. 2008. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett. Appl. Microbiol. 47: 180-186.   DOI   ScienceOn
12 Nithyanand, P. and S. K. Pandian. 2009. Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol. Ecol. 69: 384-394.   DOI   ScienceOn
13 Nitschke, M. and S. G. V. A. Costa. 2007. Biosurfactants in food industry. Trends Food Sci. Technol. 18: 252-259.   DOI   ScienceOn
14 Rohwer, F., V. Seguritan, F. Azam, and N. Knowlton. 2002. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243: 1-10.   DOI
15 Ongena, M. and P. Jacques. 2007. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
16 Qian, P. Y. 1999. Larval settlement of polychaetes. Hydrobiologia 402: 239-253.   DOI   ScienceOn
17 Rodrigues, L., I. B. Banat, J. Teixera, and R. Oliveira. 2006. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618.   DOI   ScienceOn
18 Romero, D., A. D. Vicente, R. H. Rakotoaly, S. E. Dufour, J. W. Veening, E. Arrebola, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20: 430-440.   DOI   ScienceOn
19 Sen, R. 2008. Biotechnology in petroleum recovery: The microbial EOR. Progr. Energy Combust. Sci. 34: 714-724.   DOI   ScienceOn
20 Shnit-Orland, M. and A. Kushmaro. 2009. Coral mucusassociated bacteria: A possible first line of defense. FEMS Microbiol. Ecol. 67: 371-380.   DOI   ScienceOn
21 Tang, J. S., H. Gao, K. Hong, Y. Yu, M. M. Jiang, H. P. Lin, et al. 2007. Complete assignments of 1H and 13C NMR spectral data of nine surfactin isomers. Magn. Reson. Chem. 45: 792-796.   DOI   ScienceOn
22 Toledo-Hernandez, C., A. Zuluaga-Montero, A. Bones-Gonzalez, J. A. Rodriguez, A. M. Sabat, and P. Bayman. 2008. Fungi in healthy and diseased sea fans (Gorgonia veentalina): Is Apergillus sydowwi always the pathogen? Coral Reefs 27: 707-714.   DOI
23 Coil, J. C. 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 92: 613-631.   DOI
24 Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin. Plant Physiol. 134: 307-319.   DOI   ScienceOn
25 Cameotra, S. S. and R. S. Makkar. 2010. Biosurfactantenhanced bioremediation of hydrophobic pollutants. Pure Appl. Chem. 82: 97-116.   DOI   ScienceOn
26 Fickers, P., J. S. Guez, C. Damblon, V. Leclere, M. Bechet, P. Jacques, and B. Joris. 2009. High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl. Environ. Microbiol. 75: 4636-4640.   DOI   ScienceOn
27 Ducklow, H. W. and R. Mitchell. 1979. Bacterial population and adaptations in the mucous layers on living corals. Limnol. Oceanogr. 24: 715-725.   DOI
28 Fenical, W. 1993. Chemical studies of marine bacteria: Developing a new resource. Chem. Rev. 93: 1673-1683.   DOI   ScienceOn
29 Gnanambal, K. M. E., C. Chellaram, and J. Patterson. 2005. Isolation of antagonistic marine bacteria from the surface of the gorgonian corals at Tuticorin, south east coast of india. Indian J. Marine Sci. 34: 316-319.
30 Zhang, X. Y., J. Bao, G. H. Wang, F. He, X. Y. Xu, and S. H. Qi. 2012. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb. Ecol. [In Press] DOI: 10.1007/s00248-012- 0050-x.
31 Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
32 Wu, Y. Y., C. H. Lu, X. M. Qian, Y. J. Huang, and Y. M. Shen. 2009. Diversity with genotypes, bioactivity and biosynthetic genes of endophytic actinomycetes isolated from three pharmaceutical plants. Curr. Microbiol. 59: 475-482.   DOI
33 Xu, Y., L. Miao, X. C. Li, X. Xiao, and P. Y. Qian. 2007. Antibacterial and anti-larval activity of deep-sea bacteria from sediments of the West Pacific Ocean. Biofouling 23: 131-137.   DOI   ScienceOn