• Title/Summary/Keyword: chemical crosslinking

Search Result 382, Processing Time 0.027 seconds

Thermally Robust Highly Crosslinked Poly(methyl methacrylate-co-divinyl benzene) Microspheres by Precipitation Polymerization

  • Shim, Sang-Eun;Sunhye Yang;Hyejeon Jung;Soonja Choe
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.233-239
    • /
    • 2004
  • We prepared thermally robust fully crosslinked poly(methyl methacrylate-co-divinyl benzene) [poly(MMA-co-DVB)]microspheres successfully by precipitation polymerization in the absence of a stabilizing agent. The DVB concentration plays a pivotal role not only in the formation of the individually stable microspheres but also in the polymerization characteristics, including the particle size, the uniformity of size, the polymerization yield, and the thermal properties. The number-average diameter of the microspheres increased linearly, from 0.72 to 2.15 $\mu\textrm{m}$, and the particle size distribution became narrower, by elevating the uniformity from 1.35 to 1.12, as the DVB concentration increased from 20 to 75 mol%. In addition, the yield of the polymerization increased, from 73.4 to 98.6%, as the DVB concentration increased. Since the prepared particles possess fully crosslinked microstructures, no glass transition temperatures were observed, but all the samples prepared with DVB concentrations ranging from 20 to 75 mol% possess enhanced thermal properties. Based on the DSC and TGA data, the thermal stability of the mesospheres prepared by the precipitation polymerization is significantly improved as a result of crosslinking with DVB.

Effect of Salt on Facilitated Propylene Transport through Crosslinked PVA/Silver Salt Complex Membranes

  • Kim, Jong-Hak;Min, Byoung-Ryul;Lee, Ki-Bong;Kang, Yong-Soo
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • Complex membranes consisting of silver salt ($AgBF_4,\;AgCF_3SO_3,\;AgSbF_6,\;AgNO_3$) and poly(vinyl alcohol) (PVA) or crosslinked PVA (CPVA) were prepared and tested for the separation of propylene/propane mixtures. For the tested membranes, the complex membranes containing $AgBF_4$ exhibited the highest separation properties, i.e., approximately 20 GPU ($1 GPU=10^{-6}cm^3 (STP)/(cm^2 sec cmHg)$) and 100 of selectivity at 0.2 of silver mole fraction. The CPVA membranes containing silver salt always showed higher selectivity than PVA membranes, presenting silver ions coordinated to -CHO are more effective than those to -OH groups. The threshold silver concentration of CPVA membranes was lower than that of PVA membranes, which might be due to stronger interaction of silver ions with -CHO than that with -OH. The composition at which the selectivity is the highest did not significantly depend on the crosslinking, but did on the kind of silver salt.

Effect of Co-initiator on the Size Distribution of the Stable Poly(Styrene-co-Divinylbenzene) Microspheres in Acetone/Water Mixture

  • Choi, Jin-Young;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • Stable poly(styrene-co-divinylbenzene) [P(St-co-DVB)] micro spheres with narrow size distribution were synthesized in the presence of 2,2'-azobis(2,4-dimethyl valeronitrile) (V-65) and co-initiator in an acetone/water mixture in the precipitation polymerization at $53^{\circ}C$ for 24 h. Potassium peroxodisulfate (KPS), ammonium peroxodisulfate (APS) and sodium peroxodisulfate (NaPS) were used as co-initiators. The optimum ratio of acetone to water for the formation of a narrow distribution of P(St-co-DVB) particles was 49:11 (g/g). The optimum co-initiator compositions for narrow distribution were 9:1 (g/g) for V-65 to KPS, 11:1 for V-65 to APS and 6:1 for V-65 to NaPS. The yield for these compositions was $54{\sim}57%$ and the largest particle size was obtained with the lowest zeta-potential and CV values. From the XPS measurements, the charge density was increased but the zeta potential decreased with increasing sulfur content, implying that the sulfate group provides the electrostatic stabilization on the particle surface. This suggested that the self-crosslinking between styrene and DVB, the electrostatic stabilization of initiators, and the balanced hydrophobic and hydrophilic properties of the solvents are responsible for the formation of stable P(St-co-DVB) spherical particles with narrow size distribution.

Photopatternable Conducting Polymer Nanocomposite with Incorporated Gold Nanoparticles for Use in Organic Field Effect Transistors

  • Huh, Sung;Choi, Hyun-Ho;Cho, Kil-Won;Kim, Seung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1128-1134
    • /
    • 2012
  • We investigated a new method for patterning organic field-effect transistors (OFETs) using a photopatternable conducting polymer nanocomposite, consisting of poly(3-hexylthiophene) (P3HT)-coated gold nanoparticles (AuNPs) that had been modified with a photoreactive cinnamate group, to form P3HT-AuNP-CI. We found that the addition of the cinnamate group to the nanoparticle surface assisted the preparation of a solvent-resistive semiconducting film and preserved the P3HT ordering, which was interrupted by Au-P3HT interactions, as well as provided UV-controllable electrical properties. The P3HT-AuNPs-CI films could be microscale-patterned via a UV crosslinking photoreaction, represented as a promising photopatternable semiconductor material for use in advanced applications, with tunable electrical properties for fabrication of sub-micron and microscale electronic devices.

Preparation of Pore-filled Anion-exchange Membrane with PVDF and Poly(vinylbenzylchloride)

  • Park, Byungkyu;Byungpyo Hong;Kwangsoo Yu;Hongsik Byun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.207-210
    • /
    • 2004
  • The pore-filled anion-exchange membranes were prepared in this study with an asymmetric poly(vinylidene fluoride)(PVDF) membrane as a nascent membrane and poly(vinylbenzyl chloride)(PVBCl) as a polyelectrolyte. The solution of PVBCI having the chloromethylate aryl ring of 80 percents and 1,4-diaminobicyclo [2,2,2]octane(DABCO) was made with the solvent of tetrahydrofuran(THF) and N,N-Dimethylformamide(DMF), which is in the rotio of 8:2. A new preparation method in this study, i.e. in-situ crosslinking, enabled us to produce the pore-filled membranes without change of size, and to control the properties of final membrane with various degree of cross-linking. From the result of surface morphologies of SEM and AFM the polyelectrolyte exists in the pores of nascent membrane as a certain configuration. From the investigation of the solvent affecting much to the permeability and rejection, it was found. that the membranes using DMF and THF showed better performances than the membranes produced by THF only. The water permeability of the final membrane at low pressure(100㎪) showed a typical ultrafiltation membrane's permeability (8-10kg/㎡hr) and good values of rejection(55∼60 percent).

Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell (블록 및 랜덤 가교 술폰화 폴리이미드막의 제조 및 연료전지특성 평가)

  • Lee, Young-Moo;Park, Chi-Hoon;Lee, Chang-Hyun;Chung, Youn-Suk
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.241-251
    • /
    • 2006
  • In this study, crosslinked copolyimides with random (r-) and block (b-) structure were fabricated using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and pentanediol as crosslinkers. Linear r- and b-sulfonated copolyimides were also fabricated for comparison. Ion exchange capacities of r- and b-copolyimides were very similar to each other owing to their strong dependence of sulfonic acid content. The physical crosslinking via dimerization of carboxylic acid groups induced a reduced average interchain distance in b-copolyimide without crosslinkers. Consequently, its water uptake and methanol permeability were lower than those of r-sulfonated copolyimides. Simultaneously, the reduced interchain distance increased the content of fixed-charged ions per unit volume. The high fixed-charged ion density contributed to an enhancement of proton conductivity In the b-sulfonated copolyimide. Crosslinking caused the reduction of average interchain distance between polymer chains irrespective of types of crosslinker and polymer structure, leading to low methanol permeability. On the contrary, their proton conductivity was improved owing to formation of effective hydrophilic channels responsible for proton conduction. In particular, this trend was observed in r-copolyimide containing a fixed charged ion.

Studies of Annealing Effect on the Properties of the Rigid Polyurethane (열처리에 따른 경질 폴리우레탄의 물성 변화 연구)

  • Kang S. J.;Jung H. C.;Kim W. N.;Lee Y. B.;Choe K. H.;Hong S. H.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.18-24
    • /
    • 1998
  • Polyurethane (PU) synthesized from 4,4'-diphenylmethane diisocyanate having high functionality (f=2.9) and polyester polyol have been investigated by differential scanning calorimeter (DSC), dynamic mechanical thermal analyzer (DMTA), and Fourier transform infrared spectroscope (FT-IR). From the DSC measurement of polyurethane, a single transition temperature ($T_g$) was observed. This result indicates that polyurethanes synthesized in this work have homogeneous network structure due to high functionality of diisocyanate. It was also found that the $T_g$ of polyurethane was increased as hard segment content was increased. The results from DMTA measurement are consistent with DSC results. In order to investigate the effect of thermal annealing on the $T_g$ of polyurethane, the samples were annealed at various annealing conditions. $T_gs$ of polyurethanes were found to increased with annealing temperature. From swelling experiment and FT-IR studies, it was found that the $T_g$ was increased as crosslinking density of polyurethane was increased.

  • PDF

Decrosslinking of Cross-linked Polyethylene using Supercritical Methanol (초임계 메탄올을 이용한 가교 폴리에틸렌의 탈가교화)

  • Hong, Soon Man;Cho, Hang-kyu;Koo, Chong Min;Lee, Jang Hoon;Park, Wan Yong;Lee, Hong-Shik;Lee, Youn-Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • We investigated the recycling method to re-plasticize cross-linked polyethylene by using supercritical methanol. The cross-linked polyethylene is successfully fragmented to thermoplasticized polyethylene with little degradation reactions in supercritical fluids. The thermo-plasticization reaction was accelerated with increase in temperature in the range from $360^{\circ}C$ to $400^{\circ}C$, resulting in decrease in crosslinking density, molecular weight and mechanical properties. However, the thermoplasticized polyethylene at $360^{\circ}C$ showed comparable tensile strength and impact strength with a raw resin of crosslinked polyethylene. Chemical structure of main chain of polyethylene was not affected by reaction condition.

2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles

  • Dahili, Laura Amina;Nagy, Endre;Feczko, Tivadar
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.768-774
    • /
    • 2017
  • Horseradish peroxidase (HRP) catalyzes the oxidation of aromatic compounds by hydrogen peroxide via insoluble polymer formation, which can be precipitated from the wastewater. For HRP immobilization, poly(lactic-co-glycolic acid) (PLGA) fine carrier supports were produced by using the Nano Spray Dryer B-90. Immobilized HRP was used to remove the persistent 2,4-dichlorophenol from model wastewater. Both extracted (9-16 U/g) and purified HRP (11-25 U/g) retained their activity to a high extent after crosslinking to the PLGA particles. The immobilized enzyme activity was substantially higher in both the acidic and the alkaline pH regions compared with the free enzyme. Optimally, 98% of the 2,4-dichlorophenol could be eliminated using immobilized HRP due to catalytic removal and partly to adsorption on the carrier supports. Immobilized enzyme kinetics for 2,4-dichlorophenol elimination was studied for the first time, and it could be concluded that competitive product inhibition took place.

Synthesis of Poly(AA-co-EGDMA) Microgels by Precipitation Polymerization in Polystyrene Gel (폴리스티렌겔내에서 침전중합법에 의한 Poly(AA-co-EGDMA) Microgel의 합성)

  • Kim, Kong Soo;Cho, Byung Ho;Cho, Suk Hyeong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.350-355
    • /
    • 1996
  • Poly(AA-co-EGDMA) microgels were prepared by precipitation polymerization in highly swollen polystyrene gel solution. The polymerization was carried out in selective solvent such as cyclohexane/acetone at $60^{\circ}C$. Poly(AA-co-EGDMA) microgels with various site of $0.18{\sim}0.55{\mu}m$ were obtained from different concentration of polystyrene(PS), concentration of crosslinking agent(EGDMA), ratio of Ps/monomer and volume ratio of solvents. The particle size of poly(AA-co-EGDMA) microgels decreased with increasing the concentration of PS and increased with that of EGDMA.

  • PDF