• Title/Summary/Keyword: chemical conversion coating

Search Result 81, Processing Time 0.02 seconds

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.

Surface Treatment of Automotive Cast Parts of Magnesium Alloy

  • Sim, Yangjin;Kim, Jongmyung
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The surface treatments. Chrome/Manganese and Modified Chrome Pickle, that are treated to improve the anti-corrosion property which is needed to increased the probability of prototype product enabled the sand cast Magnesium test specimens to have better corrosion resistance than non-treated one. Sand cast Magnesium specimens which was treated only with chemical conversion coating had same corrosion resistance with the Steel specimens plated by Zinc, and the another one that had the finishing treatment(painting) worked on the chemical surface treatment had the corrosion resistance property to meet to FPO-3 requirement. We also investigated the multiple finishing system(chemical surface treatment + 3 coating) to test the severe condition that magnesium should to endure.

Environment-friendly Trivalent Chromate Treatment for Zn Electroplating (아연도금용 친환경 3가 크로메이트 표면처리기술)

  • Kim, Soo Won;Lee, Chul Tae
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.433-442
    • /
    • 2006
  • Hexavalent chromium passivation, as very effective anti-corrosion method, can not be used in the field of surface treatment for metal, any more. Throughout the world, this regulations which was applied to automotive industries will be extended to all industries including electronics industries in the near future. Therefore a new anti-corrosion method should be established without delay, and trivalent chromium passivation as an alternatives replace the hexavalent chromium passivation for the time being. This paper gives an overview of the currently available trivalent chromium passivation processes, and then it attempts to give an insight to develop a more effective trivalent chromium conversion coating process for possible substitution of the hexavalent chromium passivation process.

Electrochromic Performance of NiOx Thin Film on Flexible PET/ITO Prepared by Nanocrystallite-Dispersion Sol

  • Kwak, Jun Young;Jung, Young Hee;Park, Juyun;Kang, Yong-Chul;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.125-132
    • /
    • 2021
  • An electrochromic nickel oxide thin film was fabricated on a flexible PET/ITO substrate using a nanocrystallite- dispersed coating sol and bar coater. Nanocrystalline NiOx of 3-4 nm crystallite size was first synthesized by base precipitation and thermal conversion. This NiOx nanocrystallite powder was mechanically dispersed in an alcoholic solvent mixed with a silane binder to prepare a coating sol for thin film. This sol method is different from the normal sol-gel method in that it does not require the conversion of precursor by heat treatment. Therefore, this method provides a very facile method to prepare NiOx thin films on any kind of substrate and it can be easily applied to mass production. The electrochromic performance of this NiOx thin film on PET/ITO electrode with a thickness of about 400 nm was investigated in a nonaqueous LiClO4 electrolyte solution by cyclic voltammetric and repeated chronoamperometric measurements in conjunction with spectrophotometry. The visible light modulation of 44% and the colorization efficiency of 41 ㎠/C at 550 nm were obtained at the step potentials of -0.8/+1.2 V vs Ag and a duration of 30 s.

Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction (화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향)

  • Hong, Hyun-Jung;Riu, Doh-Hyung;Cho, Kwang-Youn;Kong, Eun-Bae;Shin, Dong-Geun;Shin, Dae-Kyu;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.

Characteristics of Crystalline Silicon Solar Cells with Double Layer Antireflection Coating by PECVD (결정질 실리콘 태양전지의 이중 반사방지막 특성에 대한 연구)

  • Kim, Jin-Kuk;Park, Je-Jun;Hong, Ji-Hwa;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.243-247
    • /
    • 2012
  • The paper focuses on an anti-reflection (AR) coating deposited by PECVD in silicon solar cell fabrication. AR coating is effective to reduce the reflection of the light on the silicon wafer surface and then increase substantially the solar cell conversion efficiency. In this work, we carried out experiments to optimize double AR coating layer with silicon nitride and silicon oxide for the silicon solar cells. The p-type mono crystalline silicon wafers with $156{\times}156mm^2$ area, 0.5-3 ${\Omega}{\cdot}cm$ resistivity, and $200{\mu}m$ thickness were used. All wafers were textured in KOH solution, doped with $POCl_3$ and removed PSG before ARC process. The optimized thickness of each ARC layer was calculated by theoretical equation. For the double layer of AR coating, silicon nitride layer was deposited first using $SiH_4$ and $NH_3$, and then silicon oxide using $SiH_4$ and $N_2O$. As a result, reflectance of $SiO_2/SiN_x$ layer was lower than single $SiN_x$ and then it resulted in increase of short-circuit current and conversion efficiency. It indicates that the double AR coating layer is necessary to obtain the high efficiency solar cell with PECVD already used in commercial line.

  • PDF

Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching (습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화)

  • Park, Seok-Gi;Do, Kyeom-Seon;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process (습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조)

  • Noh, Min-Ho;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

Preparation and Physical Properties of High-Solids Acrylic/Urea Coatings (하이솔리드 아크릴/우레아 도료의 제조와 도막물성 연구)

  • Jung, Choong-Ho;Kim, Sung-Rae;Park, Hyong-Jin;Kim, Myung-Soo;Park, Hong-Soo;Park, Shin-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-319
    • /
    • 2002
  • Environmental friendly acrylic/urea high-solid paint(MUHC) were prepared through the curing reaction of acrylics resin(EBHC) containing 70wt% of solids content and butylated urea curing agent. The synthesis of EBHC Was done at $150^{\circ}C$ for 6 hours, and the results were obtained as follows : $M_{n}=1830{\sim}2190$, $M_{w}$ $3290{\sim}4000$, $M_{w}/M_{n}$=1.80{\sim}1.83$ viscosity=$110{\sim}352$ cps, and conversion=$82{\sim}92$%. After the film was coated with MUHC, the various physical properties were measured. They showed that enhancement of the coating properties such as adhesion, flexibility, abrasion resistance, impact resistance, and water resistance could be expected through introdl1cing caprolactone acrylate component in acrylics resin for the high-solids content acrylics/urea coatings.