• Title/Summary/Keyword: chemical components

Search Result 3,261, Processing Time 0.038 seconds

Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles

  • Gokila, V.;Perarasu, V.T.;Rufina, R. Delma Jones
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.71-76
    • /
    • 2021
  • Synthesis of nanoparticles using green technology using plants is gaining significant attention as it is an environmentally friendly substitute to conventional physical and chemical methods. The present study was focused on the chemical and green synthesis of Iron Oxide nanoparticles from ferric chloride. The green synthesis was achieved by utilizing the bio components of Hibiscus rosa-sinensis. The Fe3O4 nanoparticles with the size range of 87-400 nm were synthesized by wet chemical reduction technique which are unstable, prone to aggregation while in green synthesis the phytochemicals present in the leaf extract acts as the capping as well as the reducing agent thus the green synthesized iron (III) oxide nanoparticles were naturally stabilized, spherical shaped and are in the size range of 2-80 nm. The results of both the protocols are compared and presented briefly.

Effect of Shearing on Crystallization Behavior of Nylon 6/Silver Nanocomposites (전단조건이 나일론 6/은 나노복합소재의 결정화거동에 미치는 영향)

  • Chae, Dong-Wook;Oh, Seong-Geun;Kim, Byoung-Chul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.321-324
    • /
    • 2002
  • Recently, organic-inorganic nanocomposites have attracted great interest from researchers since they frequently exhibit unexpected hybrid properties synergistically derived from two components[1]. The addition of highly dispersed inorganic nano-sized fillers permits improvement of certain properties of polymers as compared with conventional particulate composites; increase of modulus and strength, improved barrier properties, increase in solvent and heat resistance, and good optical properties[2]. (omitted)

  • PDF

Studies on the Chemical Constituents for the Unripe Fruits of Paeonia moutan (목단의 미숙(未熟) 과실(果實)의 성분(成分)에 관한 연구)

  • Kim, Young-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.1
    • /
    • pp.22-25
    • /
    • 1991
  • From the fresh unripe fruits of Paeonia moutan Sim. (Paeoniaceae), paeoniflorin and its acyl congeners, benzoylpaeoniflorin and benzoyloxypaeoniflorin, along with ${\beta}-sitosterol$ and methyl gallate were isolated. All compounds were identified on the basis of spectral data and chemical reactions. However, paeonol was not detected from this plant parts. These results suggested that the chemical components of the unripe fruits were virtually similar to those of root barks.

  • PDF

Reuse of treated wastewater from steel industry by reverse osmosis membrane: flux decline study

  • Kwon, Tea-Ouk;Lee, Jae-Wook;Moon, Il-Shik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.199-202
    • /
    • 2004
  • Membrane technology is widely employed as a means of producing various qualities of water from surface water, well water, brackish water and seawater. This is also used in industrial wastewater treatment and its recycling process. A large volume of wastewater is generated by the steel industry. Presently, the treated wastewater from the steel industry cannot be recycled, because some of its components cause either direct or indirect problems.(omitted)

  • PDF

Sensitivity Study on the Infra-Red Signature of Naval Ship According to the Composition Ratio of Exhaust Plume (폐기가스 조성 비율이 적외선 신호에 미치는 영향 연구)

  • Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Infrared signatures emitted from naval ships are mainly classified into internal signatures generated by the internal combustion engine of the ship and external signatures generated from the surface of the ship heated by solar heat. The internal signatures are also affected by the chemical components ($CO_2$, $H_2O$, CO and soot) of the exhaust plumes generated by the gas turbine and diesel engine, which constitute the main propulsion system. Therefore, in this study, the chemical composition ratios of the exhaust plumes generated by the gas turbines and diesel engines installed in domestic naval ships were examined to identify the chemical components and their levels. The influence of the chemical components of the exhaust plumes and their ratios on the infrared signatures of a naval ship was investigated using orthogonal arrays. The infrared signature intensity of the exhaust plumes calculated using infrared signature analysis software was converted to the signal-to-noise ratio to facilitate the analysis. The signature analysis showed that $CO_2$, soot and $H_2O$ are the major components influencing the mid-wave infrared signatures of both the gas turbine and diesel engine. In addition, it was confirmed that $H_2O$ and $CO_2$ are the major components influencing the long-wave infrared signatures.

Application of Molecular Orbital Theory to Biological chemistry (II). Interactions of Chemical Carcinogens with DNA Bases (分子軌道論의 生物化學에의 應用 (第 2 報). 發癌物質과 DNA 鹽基와의 相互作用)

  • Ho-Soon Kim;Yoon-Yul Park;Byung-Kak Park
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.280-287
    • /
    • 1980
  • The interactions of chemical carcinogens, such as polycyclic aromatic hydrocarbons, dimethylaminoazobenzene (DAB) and its derivatives and heterocyclic compounds with tissue components, especially with deoxyribonucleic acid (DNA), were examined by means of simple Huckel method. Assuming that the formations of a loose molecular complex between the carcinogens and the tissue components are the first step of chemical carcinogenesis, the most proble orientation between the chemical carcinogens and adenine-thymine (A=T) pair or guanine-cytosine $(G\equivC)$ pair is determined. It has been found that, in the case of the formation of molecular complex between chemical carcinogens and A=T pair, the two atoms of K-region of the carcinogens and the atom of L-region in the proximity of their K-region are combined correspondingly with C-l' carbon atom in the sugar that is attached to thymine, N-1 nitrogen atom and C-5 carbon atom in the thymine part of A=T pair, while, in the case of that between the carcinogens and $G\equivC$ pair, the above three atoms of the carcinogens are combined correspondingly with C-8 carbon atom, N-9 nitrogen atom and N-3 nitrogen atom in the guanine part of $G\equivC$ pair.

  • PDF

Study of The Relation between Smoke Component and Sensory Evaluation of Cigarettes with the Different Leaf Blending (엽배합 특성에 따른 담배 연기성분과 관능특성과의 상관관계 구명)

  • 황건중;이문수;나도영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.2
    • /
    • pp.144-153
    • /
    • 2003
  • This study was carried out to determine the relationship between smoke components and sensory evaluation by changes tobacco leaf blending. Seven different cigarettes were made by adding different types of oriental, reconstituted and expanded tobacco leaves. 62 kinds of smoke components which were 6 of general components, 34 of semi-volatile and volatile components, 9 of acid components, and 13 of phenolic components were analyzed. Eight kinds of sensory item were evaluated and also electronic nose system data was collected. All smoke components and sensory characteristics of mainstream smoke were changed by the different blending. To determine the relationship between smoke components and sensory test, the correlation and regression analysis were carried out by using SPSS statistical program. Tar, pH, and CO showed a high correlation with sensory evaluation item. As tar related to hotness, CO have a high correlation with offensive aroma. Semi-volatile and volatile components of smoke related to sensory characteristics such as aroma, taste, irritation, hotness and smoothness. When propylene, l,3-butadiene, butane, isoprene, and 2-methylfuran showed a high correlation with aroma; methyl chloride, methanol, toluene, ethyl benzene showed a high correlation with irritation. Some acidic components and phenolic components of smoke also had a high relation to smoke volume. Especially the acidic components such as 2-furoic acid, 2-hydroxybutyric acid, phenylacetic acid and palmitic acid; the phenolic components such as 4-vinyl phenol, pyrocatechol, 3-methyl catechol, hydroquinone showed a high correlation with smoke volume. As using regression analysis, it was possible to estimate the results of sensory evaluation from the smoke analysis data. From the results of electronic nose system analysis, we can find the different pattern by adding expanded tobacco leaf.

Characteristic study on the chemical components of Korean curved ginseng products

  • Cho, Chang-Won;Kim, Young-Chan;Kang, Jin-Hee;Rhee, Young Kyoung;Choi, Sang Yoon;Kim, Kyung-Tack;Lee, Young-Chul;Hong, Hee-Do
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Dried ginseng (DG) is in fact the representing ginseng product in the worldwide market. Although it is made in various packages depending on the processing method, size and age of DG, basic scientific data reporting the chemical components are limited. In this study, 4-year-old curved ginseng (CG), one of the domestic DG products, was selected for further investigation. Eighty-six samples of 30 and 50 piece-grade CG, which are the most widely distributed in the market, were collected for 5 yr. Their major components, such as moisture, total sugar, acidic polysaccharides, total phenolic compounds, and saponins, were analyzed to figure out the standard quality characteristics. The moisture content of all CG samples was less than 15%. The total water-soluble sugar contents were 22.9% to 47.8% and 23.2% to 49.5% in the 30 and 50 piece-grade CG, respectively. The acidic polysaccharide contents were 3.6% to 6.7% and 2.9% to 6.9% in the 30 and 50 piece-grade CG, respectively. The total phenolic compound content was 0.4% to 0.5% in CG, regardless of the piece-grade. The crude saponin content, which represents the active component of ginseng, was over 2% in all samples. In 30 piece-grade CG samples, the contents of major ginsenosides, Rb1, Rf, and Rg1, were 2.2 to 4.7 mg/g, 0.4 to 1.3 mg/g, and 1.6 to 4.0 mg/g, respectively. The ginsenoside contents in 50 piece-grade CG samples were 2.1 to 3.9 mg/g (Rb1), 0.5 to 1.2 mg/g (Rf), and 1.3 to 3.4 mg/g (Rg1). Overall, since there were relatively high standard deviation and coefficient of variation in all the chemical component contents that were assessed, we found some difficulties in showing the CG standard chemical component characteristics by average, standard deviation, and other statistical analysis factors.

Physical Properties of Carbon Prepared from a Coconut Shell by Steam Activation and Chemical Activation and the Influence of Prepared and Activated Carbon on the Delivery of Mainstream Smoke

  • Ko, Dong-Kyun;Shin, Chang-Ho;Jang, Hang-Hyun;Lee, Young-Taeg;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Several activated carbon in different specific surface area was prepared by steam and chemical activation of coconut shell. Products were characterized by BET ($N_2$) at 77K, and probed to be highly specific surface area of $1580m^2/g$ and pore volume that had increased with activating conditions. And also we have analyzed the adsorption efficiency of vapor phase components in cigarette mainstream smoke in order to evaluate the relationship between thesmoke components and the physicochemical properties of activated carbons. As a result of this study, the delivery of mainstream smoke was directly affected by the specific surface area and the pore size of activated carbon. The activated carbon prepared by steam activation exhibited better adsorption efficiency on the vapor phase components in mainstream smoke compared with activated carbon prepared by $ZnCl_2$, due to the higher micro-pore area of 66%. But the adsorption efficiency of semi-volatile matters such as phenolic components in a main stream smoke by the activated mesoporous carbon prepared by $ZnCl_2$ is more effective. From the these results, we can conclude that specific surface area by the micropore area increased the adsorption efficiency of activated carbon on vapour phase components, but semi-volatiles or particulate matter was affected by the ratio of mesopore area in total specific surface area.