• Title/Summary/Keyword: chemical bond

Search Result 1,579, Processing Time 0.025 seconds

Application of UV Curable Coating for the Surface Protection of Polymeric Materials: PVC and Polystyrene (고분자 물질의 표면 보호를 위한 자외선 경화 도료의 응용)

  • Moon, Myung-Jun;Park, Jin-Hwan;Lee, Gun-Dae;Suh, Cha-Soo;Kim, Jong-Rae
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.175-184
    • /
    • 1991
  • Ultraviolet curable coatings are often used to protect the surface of polymer materials exposed to the ultraviolet radiation. However, the adhesion of epoxy acrylate on poly(vinyl chloride) and the UV curable coating on polystyren are poor. The objective of this work was to improve the adhesion of coating according to various formulations of the reactive diluents and finishing methods using the photografting of multifunctional acrylate and the surface activation on polymer surface impregnated a phtoinitiator. The addition of Tripropylene glycole diacrlate in the formulation of coating results in the improvement of adhesion of coating due to the flexibility. But the increase of the crosslinking density which results from the oxidation of surface during the exposure of UV radiation caused the loss of adhesion of coating exept the photografting method. In the trimethylolpropane triacrylate the improvement of adhesion are considerable due to the chemical bond between multifundtional acrylate and surface. From this work we expect to achieve the varity and functionality in the formulation of coating according to the photografting and surface activating of polymer.

  • PDF

Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC (탄화규소 결정상의 종류가 탄화규소 표면에 ZSM-5가 형성되는데 미치는 영향)

  • Jung, Eunjin;Lee, Yoon Joo;Kim, Younghee;Kwon, Woo Teck;Shin, Dong-Geun;Kim, Soo Ryong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.247-252
    • /
    • 2015
  • ZSM-5 crystals grew on the surface of ${\alpha}$-SiC and ${\beta}$-SiC particles by hydrothermal synthesis method. SiC particles which were > $50{\mu}m$ of size were used, and oxide layer were developed on the surface of the particles to induce growth of ZSM-5 from the surface. Then, synthesis time and temperature condition were considered growing ZSM-5. In this study, oxide layer was formed on ${\beta}$-SiC at $900^{\circ}C$ in air, and it was controlled to grow ZSM-5 grew from the ${\beta}$-SiC surface with $150^{\circ}C$ synthesis condition. This is due to Si-O-Si or Si-O-Al bond, which is basic framework of ZSM-5 can be easily formed, from the silicon oxide film on the surface of ${\beta}$-SiC. When the synthesis temperature was $200^{\circ}C$, the size of ZSM-5 was increased, and it covered much area of the SiC surface with better crystal shapes with longer synthesis time.

Photochemical Generation of Phenylsilylene and Its Chemistry (광분해 반응에 의한 Phenylsilylene의 생성과 그 반응성에 관한 연구)

  • Do Nam Lee;Han Seop Shin;Chang Hwan Kim;Myong Eui Lee
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.757-764
    • /
    • 1993
  • The photochemical precursors, 1,1,1,3,3,3-hexamethyl-2-phenyltrisilane(2) and 2,3-dicarbomethoxy-1,4,5,6,7-pentaphenyl-7-silanorbornadiene(5) were synthesized in the yield of 10% and 73%, respectively. Irradiation of 2 at 254 nm in the presence of triethylsilane gave 1,1,1-triethyl-2-phenyldisilane (6) in 44% yield which was the product of phenylsilylene insertion into the Si-H bond. Irradiation of 2 in the presence of diphenylacetylene gave 1-phenyl-1-silacyclopenta-2,4-diene(4) in 68% yield together with 1,2-diphenyl-1,2-disilacyclohexa-2,5-diene(26%) which were formed from [2+2] addition of the silacyclopropene to diphenylacethylene and formed from dimerization of silacyclopropene, respectively. From the neat photolysis of precursor 2,1,5-dihydrosilanthrene(11), intermolecular C-H insertion product of phenylsilylene and 1,2-diphenyltrisilane(12), Si-H insertion product of phenylsilylene to the precursor were obtained in the yield of 5% and 7%, respectively. In the same experimental condition, both photolyses of 5 in the presence of triethylsilane and methanol showed that the intramolecular 1,5-sigmatropic rearrangement of precursor 5 to give the formation of silylenolether was more favorable process than the generation of phenylsilylene.

  • PDF

Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor

  • Thangapandian, Sundarapandian;Krishnamoorthy, Navaneethakrishnan;John, Shalini;Sakkiah, Sugunadevi;Lazar, Prettina;Lee, Yu-No;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.

Kinetics of the Reaction of Phenacyl Bromide with Anilines in Methanol and Dimethylformamide (Phenacyl Bromide와 置換아닐린類와의 反應에 關한 反應速度論的 硏究)

  • Soo-Dong Yoh;Doo-Jung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.376-382
    • /
    • 1981
  • The rates and the activation parameters for the reaction of phenacyl bromide with substituted anilines in methanol and dimethylformamide were measured. The effects of substituted anilines were discussed. The rate of the reaction was increased with the electron donating power of substituent and showed larger value in DMF than in MeOH. The isokinetic relationship was shown between ${\delta}H^{\neq}$ and ${\delta}S^{\neq}$, isokinetic temperature was 539 and $400^{\circ}C$ in MeOH and DMF respectively, but p-nitro aniline was deviated from linearity in both solvents caused by solvent effects. The excellent linear relationship between log k and p$K_a$ of substituted anilines was observed by following equation. log k = 0.57p$K_a$-1.28 (r = 0.996) in MeOH at $45^{\circ}C$, log k = 0.65p$K_a$-0.88 (r = 0.970) in DMF at $45^{\circ}C$. From the Hammett plot, this reaction was a nucleophilic displacement of aniline to phenacyl bromide and the following equation was obtained at $45^{\circ}C$. log k/$k_0$ = -2.00${\sigma}$ + 0.06 (r = 0.985) in MeOH; log k/$k_0$ = -2.22${\sigma}$ + 0.08 (r = 0.995) in DMF. Large deviation of p-nitro aniline in DMF is resulted from solvent effects too. From above results, the substituent effect of this reaction can be described as $S_N2$ mechanism and bond formation more proceeds in DMF relative to MeOH.

  • PDF

The Crystal Structure of Nicotine Dihydroiodide (Nicotine Dihydroiodide의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1965
  • Crystals of nicotine dihydroiodide, are orthorhombic with space group $p2_12_12_1$.The unit cell of dimensions a=7.61, b=11.01, e=17.27${\AA}$, contains four formula units. The structure has been determined by X-ray diffraction method and has been refined to give the R-index, ${\sum}{\mid}{\mid}F_{\circ}{\mid}-{\mid}F_c{\mid}{\mid}{\div}{\sum}{\mid}F_{\circ}{\mid}$, of 0.16 and 0.14 for $F_{okl}\;and\;F_{hol}$ respectively.The mean lengths of C-C and C-N bonds in pyridine ring are 1.40 and $1.35{\AA}$ and those in pyrolidine ring 1.56 and $1.48{\AA}$ respectively, though accurate measurement of bond length has not been attempted. The six atoms in the pyridine ring are coplanar and on the other hand $C_6,\;C_7,\;C_8$ and $N_2$ atoms in pyrrolidine ring form a plane within accuracy of the analysis, and $C_9$ atom is distant $0.22{\AA}$ out of the plane consist of $C_6,\;C_7,\;C_8$ and $N_2$ aoms. The normals to the two planes form an angle of $94^{\circ}$ with each other. Iodine atom is distant $3.55{\AA}$ from nitrogen atom in pyridine ring and the other iodine atom $3.58{\AA}$ from nitrogen atom in pyrrolidine ring, so that the nitrogen and iodine atoms are firmly linked.It seems that the only forces binding nicotine dihydroiodide molecules together in the crystal are Van der Waals forces.

  • PDF

The Crystal Structure of Hydroazonium Diphosphate, $N_2H_6H_4(PO_4)_2$ (Hydrazonium Diphosphate, $N_2H_6H_4(PO_4)_2$의 結晶構造)

  • Koo, Chung-Hoe;Ahn, Choong-Tai;Kim, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 1965
  • Hydrazonium diphosphate crystallizes with the space-group symmetry $P2_1/C.$ There are two formular units of $N_2H_6H_4(PO_4)_2$ in the unit cell, for which $a = 4.52{\pm}0.02, b = 8.06{\pm}0.03, c = 10.74{\pm}0.03{\AA}\;and\; {\beta} = 100{\pm}0.5^{\circ}.$ The determination of the crystal structure was carried out by means of Patterson, Fourier and difference syntheses. The phosphate group has configuration of nearly regular tetrahedron with the mean P-O distance of $1.55{\AA}.$ The N-N distance found is $1.40{\AA},$ which corresponds to previously reported values for the $N_2H_6^{++} \;ion \;in\; N_2H_6SO_4.$ A molecule has a transform with a center of symmetry in it. Each nitrogen atom forms three hydrogen bonds with the N…O distances 2.62, 2.79 and $2.89{\AA}.$ And a O…O hydrogen bond between different phosphate groups is found with the distance $2.63{\AA}.$ The structure is held together by three-dimensional network of the strong hydrogen bonds.

  • PDF

Studies on the Coordination of Acetamide to Rare Earth Metal Ion (Ln(II) (희토류 금속이온 (Ln(III))과 Acetamide 사이의 상호작용에 대한 연구)

  • Sang-Won Lee;Jeonga Yu;Chang-Ju Yoon;Yoo-Hyek Jun;Young-Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.205-211
    • /
    • 1992
  • The $2{\nu}_{C=0}$ + amide III combination band spectrum of acetamide (AA) was obtained in very dilute solutions of AA+lanthanide shift reagents (LSR) in carbon tetrachloride over the range of $15^{\circ}$ to $45^{\circ}C$. It was found that only 1 : 1 AA-LSR complex is formed by the interaction between carbonyl oxygen of AA and central metal ion(Ln(Ⅲ)) in LSR. The thermodynamic parameters for Ln(III)${\cdot}$O=C bond were determined by computer analysis of concentration and temperature dependent spectra. ${\Delta}H^{\circ}$ for the coordination of AA to Eu$(dpm)_3$, Yb$(dpm)_3$, and Pr$(dpm)_3$ have been found to be -39.1, -28.4, and -25.5 kJ/mol, respectively. It has shown that this type of ion-dipole interaction is more than twice stronger compared to the dipole-dipole interaction in the amide linkage, and largely depending on the steric hindrence effect by the bulky dpm groups around central metal ion (Ln(III)) rather than the ionic potential effect of central metal ion itself.

  • PDF

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.

Donor-π-Acceptor Type Diphenylaminothiophenyl Anthracene-mediated Organic Photosensitizers for Dye-sensitized Solar Cells

  • Heo, Dong Uk;Kim, Sun Jae;Yoo, Beom Jin;Kim, Boeun;Ko, Min Jae;Cho, Min Ju;Choi, Dong Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1081-1088
    • /
    • 2013
  • Two new metal-free organic dyes bridged by anthracene-mediated ${\pi}$-conjugated moieties were successfully synthesized for use in a dye-sensitized solar cell (DSSC). A N,N-diphenylthiophen-2-amine unit in these dyes acts as an electron donor, while a (E)-2-cyano-3-(thiophen-2-yl)acrylic acid group acts as an electron acceptor and an anchoring group to the $TiO_2$ electrode. The photovoltaic properties of (E)-2-cyano-3-(5-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)thiophen-2-yl)acrylic acid (DPATAT) and (E)-2-cyano-3-(5'-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)-2,2'-bithiophen-5-yl)acrylic acid (DPATABT) were investigated to identify the effect of conjugation length between electron donor and acceptor on the DSSC performance. By introducing an anthracene moiety into the dye structure, together with a triple bond and thiophene moieties for fine-tuning of molecular configurations and for broadening the absorption spectra, the short-circuit photocurrent densities ($J_{sc}$), and open-circuit photovoltages ($V_{oc}$) of DSSCs were improved. The improvement of $J_{sc}$ in DSSC made of DPATABT might be attributed to much broader absorption spectrum and higher molecular extinction coefficient (${\varepsilon}$) in the visible wavelength range. The DPATABT-based DSSC showed the highest power conversion efficiency (PCE) of 3.34% (${\eta}_{max}$ = 3.70%) under AM 1.5 illumination ($100mWcm^{-2}$) in a photoactive area of $0.41cm^2$, with the $J_{sc}$ of $7.89mAcm^{-2}$, the $V_{oc}$ of 0.59 V, and the fill factor (FF) of 72%. In brief, the solar cell performance with DPATABT was found to be better than that of DPATAT-based DSSC.