• Title/Summary/Keyword: chemical binding

Search Result 1,354, Processing Time 0.022 seconds

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Effect of Cationic and Anionic Porphyrins on the Structure and Activity of Adenosine Deaminase

  • Ajloo, Davood;Hajipour, Samaneh;Saboury, Ali Akbar;Zakavi, Saeed
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3411-3420
    • /
    • 2011
  • Kinetic and structural studies have been carried out on the effects of meso-tetrakis(4-sulfonatophenyl)-porphyrin ($H_2TPPS_4$) as an anionic and meso-tetrakis(3-N-methyl-pyridyl)porphyrin ($H_2TMPYP$) as a cationic porphyrin with adenosine deaminase (ADA) in 25 mM citrate/phosphate buffer, pH = 4-8, at $37^{\circ}C$ using UVvis spectrophotometry, circular dichroism (CD), fluorescence spectrophotometry as well as molecular dynamics (MD) and molecular docking. Kinetic results showed that the two porphyrins are non-competitive inhibitors. Increasing pH, increases $K_I$ and cationic porphyrin has a higher $K_I$ and lower binding constant ($K_b$) at all pH ranges. Analyzing the secondary structure revealed that both ligands decrease the secondary structure and that the anionic porphyrin is more effective.

Electrochemical Properties of Laves Phase Zr-V System Hydrogen Absorbing Alloys (Zr-V계 Laves상 수소저장합금의 전기화학적 성질)

  • Park, Chan-kyo;Cho, Tae-hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.2
    • /
    • pp.51-56
    • /
    • 1997
  • The Zr-based Laves phase, $ZrV_2$ hydrogen storage alloy is not suited for the electrode of Ni-MH battery, because the binding strength of that with hydrogen is too strong although the storage capacity is high. For an application to electrode a part of V in alloys is substituted with Ni to make weaken the binding strength. The electrochemical and thermodynamic properties of Zr-V-Ni system alloys are investigated from the equilibrium potential and studied the possibility for the application to the rechargeable battery electrode.

  • PDF

Preparation and Characterization of Surfactant-Exfoliated Graphene

  • Song, Yeari;Lee, Hoik;Ko, Jaehyoung;Ryu, Jungju;Kim, Minkyoung;Sohn, Daewon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2009-2012
    • /
    • 2014
  • An anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was introduced during the ultrasonication process for exfoliation of graphene. The surfactant plays the roles of exfoliator and stabilizer by binding to the graphene surface. The obtained modified graphene was characterized by Fourier-transform infrared spectroscopy (FT-IR) and solid state $^{13}C$ CP/MAS NMR to analyze the binding between molecules, and by X-ray diffraction (XRD) to characterize the bulk structure. The resulting graphene exhibited good dispersion stability in both water and organic solvents.

Screening of Platelet Activating Factor(PAF) Antagonist from Medicinal Plants (수종의 생약으로부터 혈소판 활성화인자 길항제 검색)

  • Son, Kun-Ho;Kim, So-Hee;Jung, Keun-Young;Chang, Hyeun-Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.2
    • /
    • pp.167-170
    • /
    • 1994
  • The platelet activating factor (PAF) is a newly discovered chemical mediator, the chemical structure of which is 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. Since PAF has potent and broad activities, its pathophysiological roles have received much attention. To develope a new PAF antagonist from medicinal plants, extracts of twenty medicinal herb were screened using PAF receptor binding, $[^{14}C]$ serotonin release and platelet aggregation.

  • PDF

Competitive Inhibition of Pepsin by Carboxylic Acids (脂肪酸에 依한 Pepsin의 競走的 억제)

  • Hong Dae Shin
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.161-168
    • /
    • 1970
  • In order to obtain the more effective evidence, supporting the hypothesis which have been previously described by former report that pepsin (EC 3.4. 4.1) forms a hydrophobic bond with the nonpolar side chain of its substrate, the inhibitory effect of carboxylic acids(from formic acid to iso-butyric acid) on the activity of pepsin to the synthetic dipeptide, N-Carbobenzoxy-L-glutamyl-L-tyrosine, was discussed. The kinetic study showed that the inhibition by carboxylic acids was competitive. The Kidecreased with increasing size of the inhibitor molecule. The $-{\Delta}F^{\circ}$increased linearly with increasing number of carbon atoms in the hydrocarbon chain of the inhibitor. It was confirmed that the hydrophobic bond between more than one side chain of amino acid residues(phenylalanine) in the binding region of the active center of pepsin and the side chain of amino acid residues in the substrate was formed as the first step of its enzymic mechanism. The inhibitory effect of carboxylic acids was due to the competition of the hydrocarbon group of the carboxylic acids with the side chain of the substrate for the hydrophobic binding site(the side chain of phenylalanine) of the pepsin.

  • PDF

The Kinetics of the Pepsin-Catalyzed Hydrolysis of N-Carbobenzoxy-L-Glutamyl-L-Tyrosine by Determination of the Spectrophotometer (合成基質 N-Carbobenzoxy-L-glutamyl-L-tyrosine의 Pepsin 加水分解反應의 分光光度法에 依한 速度論的 硏究)

  • Hong Dae Shin
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.155-160
    • /
    • 1970
  • The kinetics of the pepsin-catalyzed hydrolysis of N-carbobenzoxy-L-glutamyl-L-tyrosine at pH 3.5 and $37^{\circ}C$ were determined by a spectrophotometric technique. The pepsin used was further purified on a Sephadex G-75 column. The kinetics data were Km = l.7 ${\times}10^{-3}M,\;-{\Delta}F^{\circ}$ = 3.99Kcal/mole, and $k^3=\;2.1{\times}10^{-2}\;sec^{-1}$. An analysis of the above data and other investigators' data obtained from some dipeptides led to the following conclusions. (1) Phenylalanyl residues in a synthetic peptide are bound to pepsin more strongly than glutamyl or tyrosyl residues, supporting the theory that a part of the binding region of the active center is hydrophobic. (2) Dipeptides are bound to pepsin principally through their side chains and the binding involves both side-chain residues. (3) The nature of amino acids in dipeptides $R_2-R_1,\;affect\;the\;k_3$ values.

  • PDF

Conformational Dynamics of Heme Pocket in Myoglobin and Hemoglobin

  • Kim, Seong-Heun;Heo, Jeong-Hee;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.151-156
    • /
    • 2005
  • The conformational dynamics of heme pocket, a small vacant site near the binding site of heme proteins -myoglobin (Mb) and hemoglobin (Hb), was investigated after photolysis of carbon monoxide from MbCO and HbCO in D$_2$O solution at 283 K by probing time-resolved vibrational spectra of photolyzed CO. Two absorption bands, arising from CO in the heme pocket, evolve nonexponentially in time. The band at higher energy side blue shifts and broadens with time and the one at lower energy side narrows significantly with a negligible shift. These spectral evolutions are induced by protein conformational changes following photolysis that modify structure and electric field of heme pocket, and ligand dynamics in it. The conformational changes affecting the spectrum of photolyzed CO in heme pocket likely modulates ligand-binding activity.

Activity Profiles of Linear, Cyclic Monomer and Cyclic Dimer of Enkephalin

  • Kim, Dong-Hee;Hong, Nam-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.261-269
    • /
    • 2012
  • The cyclic dimers of enkephalin were isolated as minor components during the solution synthesis of the corresponding cyclic monomers. The ratio of cyclic dimer to monomer was approximately 1:4 from the percent of yields. In the receptor binding assay of two cyclic dimmers, ($Tyr_2-C[D-Glu-Phe-gPhe]_2$ 6, $Tyr_2-C[D-Asp-Phe-gPhe-rLeu]_2$ 8), both analogs exhibited the high preference for ${\delta}$ receptor compared to monocyclic counterparts. In the nociceptive activity, both showed about 5 times less potent than the cyclic monomers. The repeated synthesis of 14-membered cyclic analog, Tyr-C[D-Glu-Phe-gPhe-D-rLeu] 14, which was known as having three distinct cis-trans isomers, gave rise to apparently different conformational analog arousing only trans isomer. In the receptor binding assay, it showed tremendously high selectivity toward ${\mu}$ receptor $({\delta}/{\mu}=160)$.

A New Approach for Thermodynamic Study on the Binding of Human Serum Albumin with Cerium Chloride

  • Rezaei Behbehani, G.;Divsalar, A.;Saboury, A.A.;Faridbod, F.;Ganjali, M.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1262-1266
    • /
    • 2009
  • Thermodynamics of the interaction between Cerium (III) chloride, $Ce^{3+}$, with Human Serum Albumin, HSA, was investigated at pH 7.0 and $27\;{^{\circ}C}$ in phosphate buffer by isothermal titration calorimetry. Our recently solvation model was used to reproduce the enthalpies of HSA interaction by $Ce^{3+}$. The solvation parameters recovered from our new model, attributed to the structural change of HSA and its biological activity. The interaction of HSA with $Ce^{3+}$ showed a set of two binding sites with negative cooperativity. $Ce^{3+}$ interacts with multiple sites on HSA affecting its biochemical and biophysical properties.