• Title/Summary/Keyword: chemical attack

Search Result 358, Processing Time 0.022 seconds

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3587-3591
    • /
    • 2011
  • The reactions of O,O-diethyl Z-S-aryl phosphorothioates with X-benzylamines are kinetically investigated in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}x$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots are biphasic concave downwards for substituent X variations in the nucleophiles with a break point at X = H. The signs of the cross-interaction constants (${\rho}xz$) are positive for both the strongly and weakly basic nucleophiles. Considerably great magnitude of ${\rho}xz$ (= 6.56) value is observed with the weakly basic nucleophiles, while ${\rho}xz$ = 0.91 with the strongly basic nucleophiles. Proposed reaction mechanism is a stepwise process with a rate-limiting leaving group expulsion from the intermediate involving a backside nucleophilic attack with the strongly basic nucleophiles and a frontside attack with the weakly basic nucleophiles. The kinetic results are compared with those of the benzylaminolysis of O,O-diphenyl Z-S-aryl phosphorothioates.

Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1879-1884
    • /
    • 2012
  • The kinetic studies on the reactions of dipropyl chlorophosphate (3O) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) have been carried out in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal ($k_H/k_D$ = 1.09-1.01) with the strongly basic anilines while secondary inverse ($k_H/k_D$ = 0.74-0.82) with the weakly basic anilines. The steric effects of the two ligands on the rates are extensively discussed for the anilinolyses of the ($R_1O$)($R_2O$)P(=O or S)Cl-type chlorophosphates and chlorothiophosphates. A concerted mechanism is proposed with a frontside nucleophilic attack involving a hydrogen-bonded four-center-type transition state for the strongly basic anilines and with a backside attack transition state for the weakly basic anilines on the basis of the DKIEs, primary normal and secondary inverse with the strongly and weakly basic anilines, respectively.

Anilinolysis of Diphenyl Thiophosphinic Chloride and Theoretical Studies on Various R1R2P(O or S)Cl

  • Dey, Nilay Kumar;Han, In-Suk;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2003-2008
    • /
    • 2007
  • The aminolysis of diphenyl thiophosphinic chloride (2) with substituted anilines in acetonitrile at 55.0 oC is investigated kinetically. Kinetic results yield large Hammett ρX (ρnuc = ?3.97) and Bronsted βX (βnuc = 1.40) values. A concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state is proposed on the basis of the primary normal kinetic isotope effects (kH/kD = 1.0-1.1) with deuterated aniline (XC6H4ND2) nucleophiles. The natural bond order charges on P and the degrees of distortion of 42 compounds: chlorophosphates [(R1O)(R2O)P(=O)Cl], chlorothiophosphates [(R1O)(R2O)P(=S)Cl], phosphonochloridates [(R1O)R2P(=O)Cl], phosphonochlorothioates [(R1O)R2P(=S)Cl], chlorophosphinates [R1R2P(=O)Cl], and chlorothiophosphinates [R1R2P(=S)Cl] are calculated at the B3LYP/ 6-311+G(d,p) level in the gas phase.

A Study on the Structure and Thermal Property of $Co^{2+}$-Exchanged Zeolite A

  • Jong-Yul Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.265-270
    • /
    • 1991
  • Theoretical calculations on the stabilization energies of framework atoms in hydrolyses Co(Ⅱ )-exchanged zeolite A were made using some potential energy functions and optimization program. The protons which are produced by hydrolysis of $[Co(H_2O)_n]^{2+}$ ion in large cavity showed a tendency to attack the framework oxygen atom O(1) preferentially, and the oxygen atom O(4) within OH- ion was coordinated at Al atom. The weakness of bonds between T(Si, Al) and oxygen by attack of proton and too large coordination number around small aluminum atom will make the framework of Co(Ⅱ)-exchanged zeolite A more unstable. The stabilization energy of $Co_4Na_4$-A framework (- 361.57 kcal/mol) was less than that of thermally stable zeolite A($Na_{12-}$A: - 419.68 kcal/mol) and greater than that of extremely unstable Ba(Ⅱ)-exchanged zeolite A($Ba_{6-}$A: - 324.01 kcal/mol). All the data of powder X-ray diffraction, infrared and Raman spectroscopy of Co(Ⅱ)-exchanged zeolite A showed the evidence of instability of its framework in agreement with the theoretical calculation. Three different groups of water molecules are found in hydrated Co(Ⅱ )-exchanged zeolite A; W(Ⅰ) group of water molecules having only hydrogen-bonds, W(Ⅱ) group water coordinated to $Na^+$ ion, ans W(Ⅲ) group water coordinated to Co(Ⅱ) ion. The averaged interaction energy of each water group shows the decreasing order of W(Ⅲ)>W(Ⅱ)>W(Ⅰ).

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack

  • Zuo, Xiao-Bao;Wang, Jia-Lin;Sun, Wei;Li, Hua;Yin, Guang-Ji
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.19-31
    • /
    • 2017
  • This paper uses modelling and experiment to perform a quantitative analysis for the gypsum and ettringite formations in cement pastes subjected to sulfate attack. Firstly, based on Fick's law and chemical reaction kinetics, a diffusion model of sulfate ions in cement pastes is proposed, and then the model of the gypsum and ettringite formations is established to analyze its contents in cement pastes with corrosion time. Secondly, the corrosion experiment of the specimens with cement pastes immersed into 2.5%, 5.0% and 10.0% $Na_2SO_4$ solutions are carried out, and by using XRD-Rietveld method, the phases of powder samples from the specimens are quantitatively analyzed to obtain the contents of gypsum and ettringite in different surface depth, solution concentration and corrosion time. Finally, the contents of gypsum and ettringite calculated by the models are compared with the results from the XRD experiments, and then the effects of surface depth, corrosion time and solution concentration on the gypsum and ettringite formations in cement pastes are discussed.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

The Use of Chemical Additives to Protect SBS Rubbers Against Ozone Attack

  • Moakes, C.A.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • SBS thermoplastic elastomers offer an inexpensive alternative to vulcanised rubbers for many undemanding applications. They are, however, particularly susceptible to attack from atmospheric ozone leading to cracking as soon as any strain is applied. In most rubber applications some strain is unavoidable. In this paper a compounding approach to protecting SBS thermoplastic rubbers against ozone is described. An explanation is offered for why a protective effect Is observed only when certain combinations of additive are used. SBS elastomers are the most affordable class of thermoplastic rubbers. To achieve finished products resistant to ozone and without compromising the light colours often demanded, recourse must be made to blending with other saturated elastomers or replacement by hydrogenated (SEBS) types. The latter is a significantly more expensive alternative. Under laboratory conditions where the rate of ozone attack is increased by several decades, unprotected SBS begins to crack within a few hours. Several different protective agents are examined here, the best of which, a cyclic enol ether, $Vulkazon^{(R)}$ AFD, can extend the resistance to any cracking to several weeks by the use of a few percent by weight of additive. The systems reported neither discolour the polymer nor stain other materials with which it may be in contact. Use of the protective systems described here could enable SBS elastomers to compete in many applications with the more expensive SEBS polymers.

  • PDF

Pore Distribution of Porous Silicon layer by Anodization Process

  • Lee, Ki-Yong;Chung, Won-Yong;Kim, Do-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.494-496
    • /
    • 1996
  • The purpose of this study is to investigate the effect of process conditions on pore distribution in porous silicon layer prepared by electrochemical reaction. Porous silicon layers formed on p-type silicon wafer show the network structure of fine porse whose diameters are less than 100${\AA}$. In n-type porous silicon, selective growth was found on the pore surface by wet etching process after PR patterning. And numerical method showed high current density on the pore tip. With this result we confirmed that pore formation has two steps. First step is the initial attack on the surface and second step is the directional growth on the pore tip.

  • PDF

Reactivity of Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) Cation (Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) 양이온의 반응성)

  • Jin, Myung Jong;Choi, Heung Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.71-75
    • /
    • 1995
  • Tricarbonyl(2-methyl-1-phenylpentadienyl)iron(+1) hexafluorophosphate cation was prepared by the protonation of tricarbonyl(4-methyl-5-hexadien-1-ol)iron wit hexafluorophosphoric acid. Reaction of the cation with water, dimethyl cuprate, diphenylacetylenyl cuprate, and enolate of cyclohexanone gave the corresponding (η4-1,3-diene)Fe(CO)3. The regioselectivity for the nucleophilic attack appears to the predominantly the result of steric effect.

  • PDF