• 제목/요약/키워드: chemical and mechanical properties

검색결과 2,248건 처리시간 0.031초

Zn-DTP를 첨가한 공유와 합성유의 화학적 기계적 성질에 관한 연구 (A Study of Chemical and Mechanical Properties of the Mineral and Synthetic Oil Added with Two Different Zn-DTPs)

  • 박미선;조원오;한두희;강석춘;김종호
    • Tribology and Lubricants
    • /
    • 제10권1호
    • /
    • pp.78-88
    • /
    • 1994
  • For the study of chemical and mechanical properties of the synthetic and mineral oil added with two different Zn-DTPs, base and formulated oils were analyzed and compared. Kinematic viscosity and total acid number (TAN) were tested at high temperature for formulated oils. Also the oils added with different alkyl groups of Zn-DTP were tested for thermal stability and TAN changes. The 4-ball machine was used to test for the mechanical properties, such as the coefficient of friction and wear. The worn areas after sliding test were analyzed with microscope and EDX, too. From the study, mineral and synthetic oil have different effects according to the various added ratio of the primary and secondary alkyl groups of Zn-DTP. Also the temperature of test oil affected the anti-wear and friction property of the formulated oils. For synthetic oil, the primery alkyl group of Zn-DTP made better friction properties than that of secondary, while, for mineral oil, secondary alkyt group was better only at low temperature for mineral oil.

Thermal, Curing, Elastic, and Mechanical Properties of Ethylene Propylene Diene Monomer/Polybutadiene/Carbon Black Composites

  • Tae-Hee Lee;Keon-Soo Jang
    • Elastomers and Composites
    • /
    • 제58권3호
    • /
    • pp.142-151
    • /
    • 2023
  • In this study, we investigate the thermal and mechanical properties of composites comprising ethylene propylene diene monomer (EPDM) and polybutadiene (PB) obtained using carbon black (CB) as a reinforcing and compatibilizing filler. Owing to the significance of elastomeric materials in various industrial applications, blending of EPDM and PB has emerged as a strategic method to optimize the material properties for specific applications. This study offers insights into the blend composition, its microstructure, and the resulting macroscopic behaviors, focusing on the synergetic effects of composite materials. Furthermore, this study delves into curing and rheological behaviors, crosslink densities, and mechanical, thermal, and elastic properties of the elastomeric composites. Through systematic exploration, we believe that this study will be beneficial to material scientists and engineers working on developing advanced elastomeric composites.

Effects of fission product doping on the structure, electronic structure, mechanical and thermodynamic properties of uranium monocarbide: A first-principles study

  • Ru-Ting Liang;Tao Bo;Wan-Qiu Yin;Chang-Ming Nie;Lei Zhang;Zhi-Fang Chai;Wei-Qun Shi
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2556-2566
    • /
    • 2023
  • A first-principle approach within the framework of density functional theory was employed to study the effect of vacancy defects and fission products (FPs) doping on the mechanical, electronic, and thermodynamic properties of uranium monocarbide (UC). Firstly, the calculated vacancy formation energies confirm that the C vacancy is more stable than the U vacancy. The solution energies indicate that FPs prefer to occupying in U site rather than in C site. Zr, Mo, Th, and Pu atoms tend to directly replace U atom and dissolve into the UC lattice. Besides, the results of the mechanical properties show that U vacancy reduces the compressive and deformation resistance of UC while C vacancy has little effect. The doping of all FPs except He has a repairing effect on the mechanical properties of U1-xC. In addition, significant modifications are observed in the phonon dispersion curves and partial phonon density of states (PhDOS) of UC1-x, ZrxU1-xC, MoxU1-xC, and RhxU1-xC, including narrow frequency gaps and overlapping phonon modes, which increase the phonon scattering and lead to deterioration of thermal expansion coefficient (αV) and heat capacity (Cp) of UC predicted by the quasi harmonic approximation (QHA) method.

Properties of CB/SBR Rubber Composites Filled by Carbon Blacks Used as Catalysts for Hydrogen Production through Hydrocarbon Decomposition

  • Dai, Shuangye;Ao, Gyeou;Kim, Myung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.392-395
    • /
    • 2006
  • In this work, the reinforcing action of carbon blacks in rubber was investigated by SEM and UTM measurements which at low a testing of the surface and mechanical properties. In order to gain an insight into the different properties between carbon blacks before and after methane/propane decomposition, various composites were prepared with SBR synthetic rubber and different carbon blacks with four loading ratios. The results were analyzed with the aim of finding suitable conditions for decomposition reaction to cut down the net cost for hydrogen production through hydrocarbon decomposition.

  • PDF

Preparation and Properties of Modified PHEMA Hydrogels Containing Thermo-responsive Pluronic Component

  • Hong, Kwang-Hyun;Jeon, Young-Sil;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • 제17권1호
    • /
    • pp.26-30
    • /
    • 2009
  • To modify and strengthen the properties of PHEMA hydrogel, composite hydrogels containing varying amounts of a Pluronic (PEO-PPO-PEO) component were synthesized by bulk polymerization of HEMA in the presence of Pluronic dimethacrylate under mild photo initiating conditions. The effects of the Pluronic component on gel properties were investigated by measuring the degree of swelling with its temperature responsive behavior, the mechanical properties, and the morphology of the composite hydrogels. With increased Pluronic content, the modified PHEMA hydrogels exhibited an increase in the degree of swelling, and the swelling showed an enhanced thermo-responsive behavior that was completely reversible. In addition, improved mechanical strength and the development of a microporous gel morphology were observed in hydrogels containing Pluronic.

Application and evaluation of boron nitride-assisted liquid silicon infiltration for preparing Cf/SiC composites

  • Kim, Jin-Hoon;Jeong, Eui-Gyung;Kim, Se-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.116-119
    • /
    • 2011
  • C/SiC composites were prepared by boron nitride (BN)-assisted liquid silicon infiltration (LSI), and their anti-oxidation and mechanical properties were investigated. The microstructures, bulk densities, and porosities of the C/SiC composites demonstrated that the infiltration of liquid silicon into the composites improved them, because the layered-structure BN worked as a lubricant. Increasing the amount of BN improved the anti-oxidation of the prepared C/SiC composites. This synergistic effect was induced by the assistance of BN in the LSI. More thermally stable SiC was formed in the composite, and fewer pores were formed in the composite, which reduced inward oxygen diffusion. The mechanical strength of the composite increased up to the addition of 3% BN and decreased thereafter due to increased brittleness from the presence of more SiC in the composite. Based on the anti-oxidation and mechanical properties of the prepared composites, we concluded that improved anti-oxidation of C/SiC composites can be achieved through BN-assisted LSI, although there may be some degradation of the mechanical properties. The desired anti-oxidation and mechanical properties of the composite can be achieved by optimizing the BN-assisted LSI conditions.

Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers

  • Qin, Qi-Feng;Dai, Yong-Qiang;Yi, Kai;Zhang, Li;Ryu, Seung-Kon;Jin, Ri-Guang
    • Carbon letters
    • /
    • 제11권3호
    • /
    • pp.176-183
    • /
    • 2010
  • PAN precursor fibers were produced via wet-spinning process, and effects of polymerization and spinning processes, especially the stretching process, were investigated on mechanical properties and micro-morphologies of precursor fibers. An increase in molecular weight, dope solid and densification and a decrease in surface defects were possible by controlling polymerization temperature, the number of heating rollers for densification and the jet stretch ratio, which improved the mechanical properties of precursor fibers. The curves for strength, modulus, tensile power and diameter as a function of stretch ratio can be divided into three stages: steady change area, little change area and sudden change area. With the increase of stretch ratio, the fiber diameter became smaller, the degree of crystallization increased and the structure of precursor fibers became compact and homogeneous, which resulted in the increase of strength, modulus and tensile power of precursor fibers. Empirical relationship between fiber strength and stretch ratio was studied by using the sub-cluster statistical theory. It was successfully predicted when the strengths were 0.8 GPa and 1.0 GPa under a certain technical condition, the corresponding stretch ratio of the fiber were 11.16 and 12.83 respectively.

화학기상증착법에 의하여 제조된 그래핀 성장층의 기계적 마모 특성 (Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer)

  • 이종훈;김선혜;조두호;김세창;백승국;이종구;강준모;최재붕;석창성;김문기;구자춘;임병수
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.206-211
    • /
    • 2012
  • Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

Effects of Compatibilizer on Mechanical, Morphological, and Rheological Properties of Polypropylene/Poly(acrylonitrile-butadiene-styrene) Blends

  • Kum, Chong-K.;Sung, Yu-Taek;Kim, Yong-Su;Lee, Hyung-Gon;Kim, Woo-Nyon;Lee, Heon-Sang;Yoon, Ho-Gyu
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.308-314
    • /
    • 2007
  • The effects of a compatibilizer on polypropylene (PP)/poly(acrylonitrile-butadiene-styrene) (ABS) blends were studied. Blends of the PP/ABS, with PP-g-SAN copolymer as a compatibilizer, were prepared using a twin screw extruder. The flexural and impact strength of the PP/ABS blends with the PP-g-SAN copolymer increased significantly with PP-rich compositions on the addition of the PP-g-SAN copolymer at 3 phr. The increase in the mechanical properties of the PP/ABS/PP-g-SAN blend may have been due to the toughening effects of the ABS in the PP-rich compositions. In the morphology study of the PP/ABS/PP-g-SAN (80/20) blend with the PP-g-SAN copolymer, the minimum droplet size, $5.1{\mu}m$, was observed with the addition on phr of the PP-g-SAN copolymer. The complex viscosity of the PP/ABS/PP-g-SAN (80/20) blends increased with the addition of3 phr of the PP-g-SAN copolymer. From the above mechanical properties, morphology and complex viscosity results for the PP/ABS blends, it is suggested that the compatibility is more increased with the PP-rich composition (PP:ABS=80/20 wt%) of the PP/ABS blend on the addition of 3 phr of the PP-g-SAN copolymer.

A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.57-69
    • /
    • 2011
  • Carbon nanotubes (CNTs) have high Young's modulus, low density, and excellent electrical and thermal properties, which make them ideal fillers for polymer composites. Homogeneous dispersion of CNTs in a polymer matrix plays a crucial role in the preparation of polymer composites based on interfacial interactions between CNTs and the polymer matrix. The addition of a small amount of CNTs strongly improves the electrical, thermal, and mechanical properties of the composites. This paper aims to review the processing technology and improvement of properties of CNT-reinforced polymer composites.