• Title/Summary/Keyword: chemical analysis tests

Search Result 422, Processing Time 0.042 seconds

Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju

  • Ban, Jae-Doo;Moon, Seong-Woo;Lee, Seong-Won;Lee, Joo-Gong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.451-462
    • /
    • 2017
  • Physical weathering caused by external forces and chemical weathering caused by the decomposition or alteration of constituent materials are the two factors that dominate the mechanical properties of rocks. In this study, a field investigation was undertaken to identify the physical and chemical weathering characteristics of the biotite granite and granitic weathered soils in Gyeongju, South Korea. Samples were collected according to their grade of weathering and subjected to modal analysis, XRD analysis, XRF analysis, physical property tests, particle size distribution tests, and slake durability tests. Modal and XRD analysis identified these rocks as biotite granite; secondary alteration minerals were not observed. Physical property tests and particle size distribution analyses indicate an average porosity of 41.28% and a sand content of > 90 wt.%. These values are somewhat higher than those of granites in general. The results of the slake durability test and XRF analyses show that the physical and chemical weathering indices of the samples vary with the degree of weathering.

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Consideration of Geosynthetics Chemical Resistance Test for Long-Term Performance Evaluation (장기성능 평가를 위한 토목섬유 화학저항성 시험 고찰)

  • Jeon, Han-Yong;Jang, Yeon-Soo;Gong, Hak-Bong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.222-232
    • /
    • 2009
  • In this study, the real site test conditions were considered and applied to suggest the improved test method for geosynthetics chemical resistance. For this, index and performance tests were done to specify and regulate the more approached test method. Accelerated model by Arrhenius equation was applied to interpretate the experimental data. Through analysis and comparison the overall experimental results, we could suggest the possibility and setup the advanced chemical resistance test method for geosynthetics.

  • PDF

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Seismic analysis of a masonry cross vault through shaking table tests: the case study of the Dey Mosque in Algiers

  • Rossi, Michela;Calderini, Chiara;Roselli, Ivan;Mongelli, Marialuisa;De Canio, Gerardo;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.57-72
    • /
    • 2020
  • This paper presents the results of a monodirectional shaking table test on a full-scale unreinforced masonry cross vault characterized by asymmetric boundary conditions. The specimen represents a vault of the mosque of Dey in Algiers (Algeria), reproducing in detail the mechanical characteristics of masonry, and the constructive details including the presence of some peculiar wooden logs placed within the vault's abutments. The vault was tested with and without the presence of two steel bars which connect two opposite sides of the vault. The dynamic behaviour of both the vault's configurations were studied by using an incremental dynamic analysis up to the collapse of the vault without the steel bars. The use of an innovative high-resolution 3D optical system allowed measure displacement data of the cross vault during the shake table tests. The experimental results were analysed in terms of evolution of damage mechanisms, and in-plane and out-of-plane deformations. Moreover, the dynamic properties of the structure were investigated by means of an experimental modal analysis.

Life Expectancy Estimation of the Propellants KM10 using High Temperature Acceleration Aging Tests and Stockpile Analysis Test (고온가속노화시험법과 저장분석시험법을 이용한 추진제 KM10의 기대수명 평가)

  • Cho, Ki-Hong;Kim, Eui Yong
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.695-699
    • /
    • 2010
  • The propellant KM10, a single propellant manufactured from nitrocellulose, was known to cause natural degradation phenomena at long term storage. In this study, the self-life was estimated using high temperature acceleration aging tests and stockpile analysis test. For the life expectancy estimation, Arrhenius equation and Berthelot equation were used in the high temperature acceleration tests, and the first order regression was used in the Stockpile analysis test. The self-life of propellant KM10 using the Arrhenius equation and Berthelot equation showed significantly different results as 43.73, 16.53 years in the high temperature acceleration test, and it showed 42.94 years in the Stockpile analysis test. The value of self-life predicted by Arrhenius equation was reasonable when compared with the result of E. R. Bixon.

Wine quality prediction analysis using machine learning (머신러닝을 이용한 와인 품질 예측분석)

  • Kim, Min-Seung;Jeong, Jae-hyeon;Kim, Jong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.690-693
    • /
    • 2022
  • In this study, we used wine data to perform correlation analysis on factors that affect wine quality, and predicted wine quality standards based on the results. The dataset used in this study used data from 1599 red wines and 4898 white wines produced in Vinho verde, Portugal, for a total of 6497. The variable items are 12 kinds of component variables that represent wine components through physical and chemical analysis tests, a total of 1599 observations, and a total of one of the representative wines of the three major wine producing regions in the world (France, Italy, Spain). Added 3 pieces. Analysis was made by applying national climate change data.

  • PDF

Item Analysis of Japanese NCTUA for the Quality Improvement of Chemistry Items of CSAT (대학수학능력시험에서 화학 문항의 질 제고를 위한 일본 대학입시센터시험 문항 분석)

  • Kim, Hyun-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.818-828
    • /
    • 2010
  • It has already been 17 years since the first implementation of the Korean College Scholastic Ability Test (CSAT). Having been administered so many CSAT tests including practice tests, criticisms have been made against CAST tests being stuck to the same pattern and focusing mainly on knowledge-based items. To address this issue, we analyzed the chemistry items of the Japanese National Center Test for University Admissions (NCTUA) administered in January of 2009 with regard to content factors, behavioral domains, item types, and noted any peculiarities in comparison to CSAT. Also, we estimated the predicted percentage of correct answers from the perspectives of Korean candidates to arrive at implications for chemistry items of CSAT.

Doped Sol-gel TiO2 Films for Biological Applications

  • Gartner, M.;Trapalis, C.;Todorova, N.;Giannakopoulou, T.;Dobrescu, G.;Anastasescu, M.;Osiceanu, P.;Ghita, A.;Enache, M.;Dumitru, L.;Stoica, T.;Zaharescu, M.;Bae, J.Y.;Suh, S.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1038-1042
    • /
    • 2008
  • Mono and multilayer TiO2(Fe, $PEG_{600}$) films were deposited by the dip-coating on $SiO_2$/glass substrate using sol-gel method. In an attempt to improve the antibacterial properties of doped $TiO_2$ films, the influence of the iron oxides and polyethilenglycol ($PEG_{600}$) on the morphological, optical, surface chemical composition and biological properties of nanostructured layers was studied. Complementary measurements were performed including Spectroscopic Ellipsometry (SE), Scanning Electron Microscopy (SEM) coupled with the fractal analysis, X-Ray Photoelectron Spectroscopy (XPS) and antibacterial tests. It was found that different concentrations of Fe and $PEG_{600}$ added to coating solution strongly influence the porosity and morphology at nanometric scale related to fractal behaviour and the elemental and chemical states of the surfaces as well. The thermal treatment under oxidative atmosphere leads to films densification and oxides phase stabilization. The antibacterial activity of coatings against Escherichia Coli bacteria was examined by specific antibacterial tests.