• Title/Summary/Keyword: chemical adsorption

Search Result 2,234, Processing Time 0.032 seconds

The Photovoltaic Effect of Iodine-Doped Metal Free Phthalocyanine/ZnO System (Ⅰ) (요오드가 도핑된 무금속 프탈로시아닌/산화아연계의 광기전력 효과(Ⅰ))

  • Heur, Soun-Ok;Kim, Young-Soon;Park, Yoon-Chang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.163-175
    • /
    • 1995
  • Metal free phthalocyanine($H_2Pc$) partially doped with iodine, $H_2Pc(I)x$, has been made to improve photosensitizing efficiency of ZnO/$H_2Pc$. The content of iodine dopant level(x) for $H_2Pc(I)x$ upon $H_2Pc$ polymorphs was characterized as ${\chi}-H_2Pc(I)_{0.92}$ and ${\beta}-H_2Pc(I)_{0.96}$ by elemental analysis. Characterization of iodine-oxidized $H_2Pc$ were investigated by TGA (thermogravimetric analysis), UV-Vis, FT-IR, Raman and ESR (electron spin resonance) spectrum, and the adsorption properties of $H_2Pc(I)x$ on ZnO were characterized by means of Raman and ESR studies. TGA for $H_2Pc(I)x$ showed a complete loss of iodine at approximately 265$^{\circ}C$ and the Raman spectrum of $H_2Pc(I)x$ and ZnO/$H_2Pc(I)x$ at 514.5 nm showed characteristic $I_3^-$ patterns in the frequency region 90∼550 $cm^{-1}$. ZnO/$H_2Pc(I)x$ exhibited a very intense and narrow ESR signal at $g=2.0025{\pm}0.0005$ compared to $H_2Pc$/ZnO. Iodine doped ZnO/$H_2Pc(I)x$ showed a better photosensitivity compared to iodine undoped ZnO/$H_2Pc$. That is, the surface photovoltage of ${\chi}-H_2Pc(I)_{0.92}$/ZnO was approximately 31 times greater than that of ZnO/${\chi}-H_2Pc$ and ZnO/${\beta}-H_2Pc(I)_{0.96}$ was 5 times more efficient than ZnO/${\beta}-H_2Pc$ at 670 nm. And the dependence of photosensitizing effect upon $H_2Pc$ polymorphs was exhibited that the surface photovoltage of ZnO/${\chi}-H_2Pc(I)_{0.92}$ was approximately 5 times greater than ZnO/${\beta}-H_2Pc(I)_{0.96}$ at 670 nm. Therefore Iodine doping of H_2Pc$ resulted in increase in photoconductivity of $H_2Pc$ and photovoltaic effect of ZnO/$H_2Pc$ in the visible region.

  • PDF

Surface Characteristics and Spontaneous Combustibility of Coal Treated with Non-polar Solvent under Room Temperature (상온에서의 용매 처리를 통한 저등급 석탄의 표면물성 및 자연발화 특성 변화)

  • Jo, Wan Taek;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.609-614
    • /
    • 2013
  • This study investigated the spontaneous combustion behavior of solvent-treated low rank coals. Indonesian lignite (a KBB and SM coal) and sub-bituminous (a Roto coal) were mixed with non-polar 1-methyl naphthalene (1MN) either by mechanical agitation or ultrasonication. The property change associated with 1MN treatment was then analyzed using proximate analysis, calorific value analysis, Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy and moisture re-adsorption test. Susceptibility to spontaneous combustion was evaluated using crossingpoint temperature (CPT) measurement along with gas analysis by GC. A FT-IR profile showed that oxygen functional groups and C-H bonding became weaker when treated by 1 MN. XPS results also indicated a decrease of the oxygen groups (C-O-, C=O and COO-). Increased hydrophobicity was found in the 1MN treated coals during moisture readsorption test. A CPT of the treated coals was ${\sim}20^{\circ}C$ higher than that of the corresponding raw coals and the ultrasonication was more effective way to enhance the stability against spontaneous combustion than the agitation. In the gas analysis less CO and $CO_2$ were emitted from 1MN treated coals, also indicating inhibition of pyrophoric behavior. The surface functional groups participating in the oxidation reaction seemed to be removed by the ultrasonication more effectively than by the simple mechanical agitation.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water (산 오염수 전처리용 침전 및 중화 특성)

  • Im, Jongdo;Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (II): Mineralogical Characteristics, Surface Area, Rheological Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (II): 광물학적 특징, 체표면적 및 유변학적 특성과 그 연계성)

  • 노진환;유재영;최우진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-47
    • /
    • 2003
  • Various applied-mineralogical characterization including measurements of surface area, size distribution, swelling index, and viscosity were done for some domestic bentonites in order to decipher the rheological properties and their controlling factors. The bentonites, which are Ca-type and relatively low-grade (rnontmorillonite contents: 30 ∼ 75 wt%), occur mostly as subhedral lamellas with the size range of 2 ∼ 4 $\mu\textrm{m}$. The size distribution of mineral fractions in bentonite suspension is dominant in the range of 10 ∼ 100 $\mu\textrm{m}$, and though rather complicated, exhibits roughly bimodal patterns. The feature is more conspicuous in the case of zeolitic bentonite. The bentonites have surface areas ranging 269 ∼ 735 $\m^2$/g, which are measured by EGME adsorption method. The EGME surface areas are nearly proportional to the rnontmorillonite contents, moisture contents, or total CEC. In the surface area measurements, zeolitic bentonites have slightly higher values than those zeolite- free types. The measured swelling index and viscosity of domestic bentonites are comparatively low in values. The swelling values of bentonites were measured to be 250∼500% at maximum by progressively mixing amounts of 2 ∼ 5 wt% Na$_2$CO$_3$, which varies depending on the contents of rnontmorillonite and other impurities, especially zeolite. Much amount of sodium carbonate is required for optimum swelling property of zeolitic bentonited which has usually strong Na- exchanged capacity. The bentonites, which are comparatively feldspar-rich and low in size and crystallinity, tend to be higher in viscosity values. Tn addition, the viscosity is largely higher in case of the bentonites with higher pH in suspension. However, the rheological properties of bentonites such as swelling index and viscosity do not show any obvious relationships with rnontmorillonite contents and mean particle size in suspension. In contrast, roughly speaking, the swelling index of bentonites is reversely proportional to the values of surface area which can be regarded as a collective physico-chemical parameter encompassing all the effects caused by mineral composition, surface charge, particle size, morphological farm, and etc. in bentonites. Thus, the rheological properties in bentonite suspension appear to be rather complicated characteristics which mainly depend on the flocculation of clay particles and the mode of particle association, i.e. quasicrystals, controlled by surface charge, morphology, size, and texture of rnon-tmorillonite, and which partly affected by the finer impurities such as zeolite.

Purification and Biological Activity of Ecdysterone from Korean Achyranthes radix (韓國産 牛膝의 Ecdysterone 抽出과 그 生理活性에 관한 硏究)

  • Kim, Jeong-Il;Lee, Jae-Yong;Kim, Chun-Su;Park, Kwang-E.
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 1983
  • It has been known that the insect molting hormone and its analogues exist also in plant kingdom and their concentration has been found to be about 0.1~2.0% of dry matter, which is equivalent to $10^3{\sim}10^5$ times of those in insects. This study was carried out; 1) to isolate the phytoecdysones from Korean Achyranthes radix and characterize their physico-chemical properties. 2) to investigate the biological activity of this phytoecdysone on Bombyx mori larvae. The resuls were summarized as follows; 1. The extraction method of phytoecdysones was optimized by three consecutive reflux for 1hr using 200g of dried and milled radix per 1l methanol. 2. The purification from the crude extract was made by a series of steps such as precipitation of gum-type polymer with n-Butyl acetate, adsorption on technical grade silica and chromatography with neutral alumina. The conditions of each step were optimized and the resulting crude crystal was about 500mg per kg dry radix. 3. The crude crystal from the cultivated Achyranthes(Achyranthes japonia) contained ecdysterone (20-hydroxyecdysone) and inokosterone in the proportion of one to one. In order to separate these, a series of processes such as acetylation, separation by alumina column chromatography deacetylation by alcoholysis, deionization and crystallization were introduced and optimized 125mg of ecdysterone and 18mg of inokosterone per kg dry radix were thus obtained. 4. The wild Achyranthes (Achyranthes obtusifolia) radix was found to contain the ecdysterone only. A 285mg of ecdysterone was crystallized per kg dry radix. 5. Isolated ecdysterone, inodosterone and acetylated compounds were characterized by IR., UV., NMR spectroscopy, mp, TLC and densitometry. 6. Ligation experiment was undertaken to confirm the biological activity of the purified ecdysterone; the ecdysterone could induce larval-pupal metamorphosis in the ligated abdomen of 4th instar larvae injecting 0.5~1.0${\mu}g$. 7. By ecdysterone feeding experiment using artificial diet, it was elucidated that the critical time of feeding would be the first half of each instar resulting in increased weight of silk layer. 8. The ecdysterone was fed to 5th instar silkworm at the level of 1, 2, 3, 5ppm of dry feed of artificial diet containing 5% mulberry leaves for 72hrs. At 2ppm of the concentration. body weight and silk layer weight were arrived at maximum. But at higher concentrations body weight and silk layer weight decreased than the control group. At 2ppm of the concentration, body weight was increased by 12.5%. 9. Feeding 2ppm of ecdysterone at the later half of 5th instar, the duration of larvae was shortened.

  • PDF

Toxicity Assessment of Silver Ions Compared to Silver Nanoparticles in Aqueous Solutions and Soils Using Microtox Bioassay (Microtox 생물검정법을 이용한 은 이온과 은 나노입자의 수용액과 토양에서의 독성 비교 평가)

  • Wie, Min-A;Oh, Se-Jin;Kim, Sung-Chul;Kim, Rog-Young;Lee, Sang-Phil;Kim, Won-Il;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1114-1119
    • /
    • 2012
  • This study was conducted to assess the microbial toxicity of ionic silver solution ($Ag^+N$) and silver nanoparticle suspension ($Ag^0NP$) based on the Microtox bioassay. In this test, the light inhibition of luminescent bacteria was measured after 15 and 30 min exposure to aqueous solutions and soils spiked with a dilution series of $Ag^+N$ and $Ag^0NP$. The resulting dose-response curves were used to derive effective concentration (EC25, $EC_{50}$, EC75) and effective dose ($ED_{25}$, $ED_{50}$, $ED_{75}$) that caused a 25, 50 and 75% inhibition of luminescence. In aqueous solutions, $EC_{50}$ value of $Ag^+N$ after 15 min exposure was determined to be < $2mg\;L^{-1}$ and remarkably lower than $EC_{50}$ value of $Ag^0NP$ with $251mg\;L^{-1}$. This revealed that $Ag^+N$ was more toxic to luminescent bacteria than $Ag^0NP$. In soil extracts, however, $ED_{50}$ value of $Ag^+N$ with 196 mg kg-1 was higher than $ED_{50}$ value of $Ag^0NP$ with $104mg\;kg^{-1}$, indicating less toxicity of $Ag^+N$ in soils. The reduced toxicity of $Ag^+N$ in soils can be attributed to a partial adsorption of ionic $Ag^+$ on soil colloids and humic acid as well as a partial formation of insoluble AgCl with NaCl of Microtox diluent. This resulted in lower concentration of active Ag in soil extracts obtained after 1 hour shaking with $Ag^+N$ than that spiked with $Ag^0NP$. With longer exposure time, EC and ED values of both $Ag^+N$ and $Ag^0NP$ decreased, so their toxicity increased. The toxic characteristics of silver nanomaterials were different depending on existing form of Ag ($Ag^+$, $Ag^0$), reaction medium (aqueous solution, soil), and exposure time.