DOI QR코드

DOI QR Code

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water

산 오염수 전처리용 침전 및 중화 특성

  • Im, Jongdo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lee, Sangbin (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Jae-Woo (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2022.07.07
  • Accepted : 2022.08.02
  • Published : 2022.09.01

Abstract

Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

본 연구에서는 산 오염수 전처리를 위한 침전 및 중화 공정에 대해 연구하였다. 침전 및 중화 공정은 오염물질 흡착, 휘발, 생분해 혹은 산화 등과 같은 제거공정 전에 필요한 전처리 공정으로 좀 더 효과적인 제거효율을 도출해 내기 위함이다. 침전 공정에선 일반적인 퇴적토인 부산 감천항의 퇴적토를 이용하여 침강 속도, 입자 균등계수, 곡률계수 및 입도지수를 파악하였고, 이를 위해 스테인리스 스틸로 구성된 표준체 판을 사용하였다. 각 표준체의 망 단위는 4, 10, 20, 40, 80, 100, 200이며 조립된 체 상부에 건조된 퇴적토를 투하시킨 후 진동을 가하여 입경별로 분류하였다. 입경별로 분류한 건조퇴적토는 1L 크기의 임호프콘(Imhoff cone)과 200mL 메스실린더에 침강시켰다. 각 입경별 침강속도를 구한 후 스토크스의 법칙(Stokes' law)에 따라 입자의 밀도를 계산하였다. 그 결과, 사용된 건조퇴적토의 평균 입자밀도는 1.93g/cm3였으며 침강속도가 가장 낮은 값은 0.11cm/s이였다. 침강속도와 입자 밀도를 통하여 화학사고 시 입자의 침전 위치나 퇴적 가능한 범위를 알아 대비할 수 있다. 중화 공정의 경우 강한 산성을 지니고 있는 질산과 황산을 사용하였고 중화제로 수산화나트륨과 산화칼슘을 사용하였다. 질산과 황산의 산도는 2, 3, 4, 5로 선정하였고 수산화나트륨과 산화칼슘(0.1, 0.01, 0.001M)를 사용하여 중화제 사용량이 pH 7의 조건을 맞췄을 때 5v/v% 미만으로 나올 수 있는 값을 도출하였다. 가장 농도가 높은 0.1M의 중화제의 경우 가장 낮은 pH 2를 제외하고 모두 5v/v% 미만으로 충족시켰고, 0.01M의 중화제는 일부 pH에서만 충족되었으며, 농도가 가장 낮은 0.001M의 중화제는 모든 pH에서 5v/v% 미만의 조건을 충족시키지 못 하였다. 질산과 황산 모두 산화칼슘이 수산화나트륨 보다 더 적은 부피비를 차지하였고 중화에 적합한 효과를 도출하였다.

Keywords

Acknowledgement

본 연구는 환경부 화학사고 환경피해저감 기술사업의 일환으로 수행되었으며(과제번호 2020001960002), 이에 감사드립니다.

References

  1. 중앙119구조본부 (2020), 화학사고 현장대응 매뉴얼, 발간등록번호. 11-1661010-000006-01, 소방청 중앙119구조본부, pp. 134~145.
  2. Arabia, S. (2006), Swelling behavior of expansive shale: a case study from ABDULLAH I. AL-MHAIDIB, Expansive Soils, CRC Press, pp. 285~300.
  3. Cheng, N. S. (1997), Simplified settling velocity formula for sediment particle, Journal of hydraulic engineering, Vol. 123, No. 2, pp. 149~152. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(149)
  4. Craig, R. F. (2004), Craig's soil mechanics, Taylor & Francis Group, London.
  5. Erguler, Z. A. (2016), A quantitative method of describing grain size distribution of soils and some examples for its applications, Bulletin of Engineering Geology and the Environment, Vol. 75, No. 2, pp. 807~819. https://doi.org/10.1007/s10064-015-0790-1
  6. Erguler, Z. A. and Shakoor, A. (2009), Quantification of fragment size distribution of clay-bearing rocks after slake durability testing, Environmental & Engineering Geoscience, Vol. 15, No. 2, pp. 81~89. https://doi.org/10.2113/gseegeosci.15.2.81
  7. Erguler, Z. A. and Shakoor, A. (2009), Relative contribution of various climatic processes in disintegration of clay-bearing rocks, Engineering Geology, Vol. 108, No. 1~2, pp. 36~42. https://doi.org/10.1016/j.enggeo.2009.06.002
  8. Gao, H. and Stenstrom, M. K. (2020), Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review, Water Environment Research, Vol. 92, No. 6, pp. 796~820. https://doi.org/10.1002/wer.1279
  9. Garcia-Gaines, R. A. and Frankenstein, S. (2015), USCS and the USDA soil classification system: Development of a mapping scheme, ERDC/CRREL TR-15-4, U.S. Army Engineer Research and Development Center, Vicksburg, MS, pp. 5~8.
  10. Han, Y., Zhang, J., Mattson, K. G., Zhang, W. and Weber, T. A. (2016), Sample sizes to control error estimates in determining soil bulk density in California forest soils, Soil Science Society of America Journal, Vol. 80, No. 3, pp. 756~764. https://doi.org/10.2136/sssaj2015.12.0422
  11. Holtz, R. D., Kovacs, W. D. and Sheahan, T. C. (1981), An introduction to geotechnical engineering, Englewood Cliffs: Prentice-Hall.
  12. Hu, Z. H., Wang, G. and Yu, H. Q. (2004 ), Anaerobic degradation of cellulose by rumen microorganisms at various pH values, Biochemical Engineering Journal, Vol. 21, No. 1, pp. 59~62. https://doi.org/10.1016/j.bej.2004.05.004
  13. Kim, K., Yoon, S., Kwon, H. A. and Choi, Y. (2020), Effects of treatment agents during acid washing and pH neutralization on the fertility of heavy metal-impacted dredged marine sediment as plant-growing soil, Environmental Pollution, Vol. 267.
  14. Li, B. and Stenstrom, M. K. (2014), Research advances and challenges in one-dimensional modeling of secondary settling tanks-a critical review, Water research, Vol. 65, pp. 40~63. https://doi.org/10.1016/j.watres.2014.07.007
  15. Onyelowe, K. C. and Shakeri, J. (2021), Intelligent prediction of coefficients of curvature and uniformity of hybrid cement modified unsaturated soil with NQF inclusion, Cleaner Engineering and Technology, Vol. 4, 100152. https://doi.org/10.1016/j.clet.2021.100152
  16. Oseen, C. W. (1927), Neuere methoden und ergebnisse in der hydrodynamik. Leipzig: Akademische Verlagsgesellschaft mbH.
  17. Powrie, W. (2004), Soil Mechanics: Concepts and Applications, Taylor & Francis Group, London.
  18. Raudkivi, A. J. (1990), Loose boundary hydraulics, Technical report, Pergamon Press, Oxford, Vol. 3.
  19. Reyes, A., Letelier, M. V., De la Iglesia, R., Gonzalez, B. and Lagos, G. (2008), Microbiologically induced corrosion of copper pipes in low-pH water, International Biodeterioration & Biodegradation, Vol. 61, No. 2, pp. 135~141. https://doi.org/10.1016/j.ibiod.2007.06.001
  20. Sha, Y. Q. (1956), Basic principles of sediment transport. J. Sediment Res, Vol. 1, No. 2, pp. 1~54.
  21. Stokes, G. G. (1851), On the effect of the internal friction of fluids on the motion of pendulums, Transaction of the Cambridge Philosophical Society, Vol. 9, pp. 8.
  22. Yoo, K. S., Kim, D. K. and Yoo, N. J. (2009), A study on the soil water characteristic curve with change of coefficient of uniform in compacted granitic soils, Journal of Industrial Technology, Vol. 29 A, pp. 145~153.
  23. Zanke, U. (1977), Berechnung der Sinkgeschwindigkeiten von Sedimenten, Vol. 46, pp. 230~245
  24. Zodi, S., Louvet, J. N., Michon, C., Potier, O., Pons, M. N., Lapicque, F. and Leclerc, J. P. (2011), Electrocoagulation as a tertiary treatment for paper mill wastewater: Removal of nonbiodegradable organic pollution and arsenic, Separation and purification Technology, Vol. 81, No. 1, pp. 62~68. https://doi.org/10.1016/j.seppur.2011.07.002