DOI QR코드

DOI QR Code

Surface Characteristics and Spontaneous Combustibility of Coal Treated with Non-polar Solvent under Room Temperature

상온에서의 용매 처리를 통한 저등급 석탄의 표면물성 및 자연발화 특성 변화

  • Jo, Wan Taek (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Choi, Ho Kyung (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Kim, Sang Do (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Yoo, Ji Ho (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Chun, Dong Hyuk (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Rhim, Young Joon (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Lim, Jeong Hwan (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Lee, Si Hyun (Clean Fuel Department, Korea Institute of Energy Research)
  • 조완택 (한국에너지기술연구원 청정연료연구단) ;
  • 최호경 (한국에너지기술연구원 청정연료연구단) ;
  • 김상도 (한국에너지기술연구원 청정연료연구단) ;
  • 유지호 (한국에너지기술연구원 청정연료연구단) ;
  • 전동혁 (한국에너지기술연구원 청정연료연구단) ;
  • 임영준 (한국에너지기술연구원 청정연료연구단) ;
  • 임정환 (한국에너지기술연구원 청정연료연구단) ;
  • 이시훈 (한국에너지기술연구원 청정연료연구단)
  • Received : 2013.05.10
  • Accepted : 2013.07.06
  • Published : 2013.10.01

Abstract

This study investigated the spontaneous combustion behavior of solvent-treated low rank coals. Indonesian lignite (a KBB and SM coal) and sub-bituminous (a Roto coal) were mixed with non-polar 1-methyl naphthalene (1MN) either by mechanical agitation or ultrasonication. The property change associated with 1MN treatment was then analyzed using proximate analysis, calorific value analysis, Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy and moisture re-adsorption test. Susceptibility to spontaneous combustion was evaluated using crossingpoint temperature (CPT) measurement along with gas analysis by GC. A FT-IR profile showed that oxygen functional groups and C-H bonding became weaker when treated by 1 MN. XPS results also indicated a decrease of the oxygen groups (C-O-, C=O and COO-). Increased hydrophobicity was found in the 1MN treated coals during moisture readsorption test. A CPT of the treated coals was ${\sim}20^{\circ}C$ higher than that of the corresponding raw coals and the ultrasonication was more effective way to enhance the stability against spontaneous combustion than the agitation. In the gas analysis less CO and $CO_2$ were emitted from 1MN treated coals, also indicating inhibition of pyrophoric behavior. The surface functional groups participating in the oxidation reaction seemed to be removed by the ultrasonication more effectively than by the simple mechanical agitation.

본 연구에서는 유기용매를 이용하여 표면처리한 저등급 석탄의 물성과 자연발화성 변화를 알아보았다. 석탄은 인도네시아 갈탄인 KBB탄과 SM탄 그리고 아역청탄인 Roto탄을 사용하였으며, 비극성 유기용매인 1-methyl naphthalene (1 MN)과 혼합한 후 단순 회전 임펠러 또는 초음파를 이용하여 일정 시간동안 교반하였다. 1MN 처리탄의 물성 변화는 공업 분석, 발열량 분석, FT-IR 분석, XPS 분석, 그리고 수분 재흡착 실험을 통해 알아보았으며, 자연 발화성 변화는 Crossing-Point Temperature 분석과, 산화에 의해 발생되는 CO, $CO_2$ 가스 분석을 통해 확인하였다. FT-IR 분석 결과 처리탄들의 수소와 산소를 포함한 결합기들이 줄었다. XPS분석 결과 원탄들에 비해 처리탄들의 C-O, C=O 그리고 COO- 피크는 감소하고 C-C 피크는 상대적으로 증가하였다. 그리고 수분 재흡착성 측정 결과 처리탄들 표면의 소수성이 증가함을 확인하였다. CPT 측정 결과 원탄들에 비해 처리탄들의 CPT 값이 $20^{\circ}C$ 이상 증가하였는데, 단순 기계적 교반보다 초음파 교반 방식으로 처리한 석탄의 CPT 값이 높았다. 이때 배출되는 가스의 분석에서도 처리탄들이 원탄들에 비해 CO와 $CO_2$ 가스 발생량이 적고 발생 시점이 늦어져 자연발화성이 억제되는 것으로 나타났다. 이는 석탄을 유기용매로 처리함으로써 미리 산화반응에 참여하는 표면의 기능기들이 제거되어 자연발화성이 억제되는 것이며, 이에 단순 기계적 교반 방식보다는 초음파 교반 방식이 보다 효과적임을 확인하였다.

Keywords

References

  1. Keith, C., "Commercial Scale Low Rank Coal Upgrading Using the BCB Process," Presentation at the 2nd Coaltrans Upgrading Coal Forum, Indonesia(2010).
  2. Sarinac, N., Ness, M. and Bullinger, C., "One Year of Operating Experience with a Prototype Fluidized Bed Coal Dryer at Coal Creek Generating Station," Proc. of the Third International Conference on Clean Coal Technologies for our Future, Italy(2007).
  3. Kim, S. D., Lee, S. H., Rhim, Y. J., Choi, H. K., Lim, J. H., Chun, D. H. and Yoo, J. H., "Drying Characteristic of High Moisture Coal Using a Flash Dryer," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 106-111(2012). https://doi.org/10.9713/kcer.2012.50.1.106
  4. Park, J. H., Shun, D. W., Bae, D. H., Park, Y. C. and Ryu, H. J., "Coal Upgrading by Multi-chamber Fluidized Bed Drying System," Proc. of the 1st International Conference on Energy, Environment and Climate Change, Vietnam(2011).
  5. Choi, H. K., Thiruppathiraja, C., Kim, S. D., Rhim, Y. J., Lim, J. H. and Lee, S. H., "Moisture Readsorption and Low Temperature Oxidation Characteristics of Upgraded Low Rank Coal," Fuel process. Technol., 92, 2005-2010(2011). https://doi.org/10.1016/j.fuproc.2011.05.025
  6. Wang, D. M., Zhong, X. X., Gu, J. J. and Qi, X. Y., "Changes in Active Functional Groups During Low Temperature Oxidation of Coal," Mining Sci. Technol., 20, 35-40(2010).
  7. Brooks, K. V., Svanas, N. and Glasser, D., "Evaluating the Risk of Spontaneous Combustion in Coal Stockpiles," Fuel, 67, 651-656(1988). https://doi.org/10.1016/0016-2361(88)90293-1
  8. Yuan, L. M. and Smith, A. C., "CO and $CO_2$ Emissions from Spontaneous Heationg of Coal Under Different Ventilation Rates," Int. J. Coal Geol., 88, 24-30(2011). https://doi.org/10.1016/j.coal.2011.07.004
  9. Schmidt, L. D., "Changes in Coal During Storage. In Chemistry of Coal Utilization," Lowry HH, Ed. John Wiley & Sons: New York. 1945; 627-676.
  10. Itay, M., Hill, C. R. and Glasser, D. A., "Study of Low Temperature Oxidation of Coal," Fuel Process. Technol., 21, 81-97(1989). https://doi.org/10.1016/0378-3820(89)90063-5
  11. Wang, H., Dlugogorski, B. Z. and Kennedy, E. M., "Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modeling," Prog. Energy Combust. Sci., 29, 487-513(2003). https://doi.org/10.1016/S0360-1285(03)00042-X
  12. Wang, H., Dlugogorski, B. Z. and Kennedy, E. M., "Thermal Decomposition of Solid Oxygenated Complexes Formed by Coal Oxidation at Low Temperatures," Fuel, 81, 1913-1923(2002). https://doi.org/10.1016/S0016-2361(02)00122-9
  13. Datin, F. U., Bukin, D., Hiromoto, U., Tetsuya, D. and Satoru, S., "Characterization of Upgraded Brown Coal," Coal Prep., 25, 31-45(2005). https://doi.org/10.1080/07349340590927350
  14. Japan Coal Energy Center; Kobe Steel, Ltd., "Low-rank Coal Upgrading Technology (UBC process)," Clean Coal Technologies in Japan, NEDO, 77-78(2006).
  15. Chun, D. H., Park, I. S., Cho, W. T., Jo, E. M., Kim, S. D., Choi, H. K., Yoo, J. H., Lim, J. H., Rhim, Y. J. and Lee, S. H., "The Stanilization Study of Low-rank Coal by Vapor Adsorption," Clean Technol., 19, 38-43(2013). https://doi.org/10.7464/ksct.2013.19.1.038
  16. Sato, Y., Kushiyama, S., Tatsumoto, K. and Yamaguchi, H., "Upgrading of Low Rank Coal with Solvent," Fuel Process. Technol., 85, 1551-1564(2004). https://doi.org/10.1016/j.fuproc.2003.10.023
  17. Takanohashai, T., Yanagida, T. and Iio, M., "Extraction and Swelling of Low Rank Coal with Various Solvent at Room Temperature," Energy Fuel, 10, 1128-1132(1996). https://doi.org/10.1021/ef960033t
  18. Ashida, R., Morimoto, M., Makino, Y., Umemoto, S., Nakagawa, H., Miura, K., Saito, V. and Kato, V., "Fractionation of Brown Coal by Sequential High Temperature Solvent Extraction," Fuel, 88, 1485-1490(2009). https://doi.org/10.1016/j.fuel.2008.12.003
  19. Buckley, A. N. and Lamb, R. N., "Surface Chemical Analysis in Coal Preparation Research: Complementary Information from XPS and ToF-SIMS," Int. J. Coal Geol., 32, 87-106(1996). https://doi.org/10.1016/S0166-5162(96)00032-8
  20. Wu, B., Hu, H. Q., Zhao, Y. P., Jin, L. J. and Fang, Y. M., "XPS Analysis and Combustibility of Residue from Two Coals Extraction with Sub and Supercritical Water," J. Fuel Chem. Technol., 37, 385-392(2009). https://doi.org/10.1016/S1872-5813(10)60001-1
  21. Jo, W. T., Choi, H. K., Kim, S. D., Yoo, J. H., Chun, D. H., Rhim, Y. J., Lim, J. H. and Lee, S. H., "A Comparison of Spontaneous Combustion Susceptibility of Coal According to Its Rank," Korean J. Chem. Eng., 30, 1034-1038(2013). https://doi.org/10.1007/s11814-013-0018-7
  22. Xuyao, Q., Wang, D. M., Milke, J. A. and Zhong, X. X., "Crossing Point Temperature of Coal," Mining Sci. Technol., 21, 255-260 (2011).
  23. Behera, P. and Mohanty, G., "Peroxy Complex and Crossing Point Temperature of Talcher Coals- an Adducer to Assess the Spontaneous Combustibility Character," J. Sci. Res., 1, 55-60(2009).
  24. Kucuk, A., Kadioglu, Y. and Gulaboglu, M. S., "A Study of Spontaneous Combustion Characteristics of a Turkish Lignite: Particle Size, Moisture of Coal, Humidity of Air," Combust. Flame, 133, 255-261(2003). https://doi.org/10.1016/S0010-2180(02)00553-9
  25. Kadioglu, Y. and Varamaz, M., "The Effect of Moisture Content and Air Drying on Spontaneous Combustion Characteristics of two Turkish Lignites," Fuel, 82, 1685-1693(2003). https://doi.org/10.1016/S0016-2361(02)00402-7
  26. Wang, H., Dlugogorski, B. and Kennedy, E., "Pathways for Production of $CO_2$and CO in Low-temperature Oxidation of Coal," Energy Fuels, 17, 150-158(2003). https://doi.org/10.1021/ef020095l
  27. Ibarra, J. V., Moliner, R. and Gavilan, M. P., "Functional Group Dependence of Cross-linking Reactions During Pyrolysis of Coal," Fuel, 70, 408-413(1991). https://doi.org/10.1016/0016-2361(91)90131-S
  28. Carras, J. N. and Young, B. C., "Self Heating of Coal and Related Materials: Models Application and Test Methods," Prog. Energy Combust. Sci., 20, 1-15(1994). https://doi.org/10.1016/0360-1285(94)90004-3

Cited by

  1. Characteristics of Binderless Briquettes for Indonesian Low-Rank Coals vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.231
  2. Experimental study on moisture re-adsorption characteristics of dried coal pp.1939-2702, 2018, https://doi.org/10.1080/19392699.2018.1531852
  3. 팜 잔사유를 이용한 고품위화 석탄의 안정화 특성분석 vol.19, pp.4, 2013, https://doi.org/10.7464/ksct.2013.19.4.469