• Title/Summary/Keyword: chelating agents

Search Result 137, Processing Time 0.048 seconds

Preparation and characterization of Ga-68-deferoxamine to test the feasibility as a bifunctional chelating agent or a renal imaging radiopharmaceutical

  • Kim, Young Ju;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Chelating agents 1,4,7-triazacyclononanetriacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 30-amino-3,14,25-trihydroxy-3,9,14,20,25-penta-azatriacontane-2,10,13,21,24-pentaone (desferrioxamine, DFO) were labeled with $^{68}Ga$ and tested in vitro properties to check the feasibility of using DFO as a bifunctional chelating agent or renal imaging agent. The chelating agents of concentration $2{\mu}M$ were labeled with $^{68}Ga$ in 0.1 M HCl at pH 1.7-10.3 at room temperature and $80^{\circ}C$ and the optimal pH for labeling each chelating agent was found. And then, the chelating agents were labeled with $^{68}Ga$ in various concentration of chelating agents at optimal pH. The labeled chelating agents were subject to stability test in human serum and to binding studies to human red blood cell (RBC) and plasma protein. The optimal pH's of NOTA, DOTA and DFO for $^{68}Ga$-labeling were 4.4, 3.6 and 5.6, respectively. DFO ($10{\mu}M$) showed high labeling efficiency (>97%) at pH 5.6. All the labeled chelating agents showed high stability in human serum. $^{68}Ga$-DFO showed low RBC binding but significant amount was bound to plasma protein. The results demonstrated that $^{68}Ga$-DFO can be used as a bifunctional chelating agent but not as a renal imaging agent.

Effect of Various Biodegradable Chelating Agents on Growth of Plants under Lead stress (생분해되는 다양한 킬레이트들이 납에 노출된 식물의 성장에 미치는 영향)

  • Lee, Sang-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to remediate metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Lead (Pb) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Pb to analyze the effect on root growth. Cys strongly increased the inhibitory effect of Pb on root growth of plants, while, His did not affect on it significantly. The inhibitory effect of oxalate is weak, and malate, citrate, and succinate did not show significant effects. Both EDTA and EDA diminished the inhibitory effect of Pb on root growth. The effect of EDA is correlated with decreased Pb uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for highly Pb-contaminated area.

Antioxidant Effect of some Chelating Agents on Soybean Oil (식용대두유에 대한 Chelating agent의 항산화 효과)

  • Cho, Mi-Za;Hahn, Tae-Sik;Kwon, Tae-Bong;Oh, Sung-Ki
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • Some chelating agents are evaluated as an antioxidant for the autoxidation of soybean oil. Soybean oil is autoxidized under a mild condition (the flow rate of 67ml $O_{2}/min$ and $50^{\circ}C$). The antioxidant effect is measured by active oxygen method, and the spectral change of autoxidized soybean oil examined. The antioxidant effect of chelating agents is increased in order of diphenic acid, naphthoquinone, pyromellitic acid, quinolinic acid and naphthalic acid, and particularly the effect is low in diphenic acid and naphthoquinone. It is found that the effect is more clearly demonstrated by NMR rather than IR and UV and that the effect is dependent on the functional group and geometric molecular structure of chelating agents.

  • PDF

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Growth of Plant Under Zinc Stress (아연 스트레스를 받는 식물의 성장을 위한 생분해되는 킬레이트로서 에틸렌디아민)

  • Lee, Sang-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.115-119
    • /
    • 2010
  • Zinc (Zn) is an essential element required for growth and development of plants. However, Zn can be toxic to plants when it presents excessive amount. Phytoextraction is an economic and environment-friendly technique using plants to clean-up metal-contaminated soils. However, the technique cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metalcontaminated areas. Zn as a target metal and cysteine (Cys), histidine (His), malate, citrate oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Plants were grown on agar media containing various chelating agents with Zn to analyze the effect on plant growth. Malate and His slightly increased the inhibitory effect of Zn on root growth of plants, whereas Cys, citrate, oxalate, and succinate did not show significant effects. However, EDA strongly diminished the inhibitory effect of Zn on root growth. The effect of EDA is correlated with decreased Zn uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for growth of plants in highly Zn-contaminated areas.

Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles (폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출)

  • Park, Moo-Kyung;Kim, Kyung-Woo;Ahn, Dong-June;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.348-351
    • /
    • 2011
  • In this research, we developed a sensor system which can easily detect several chelating agents using polydiacetylene(PDA) vesicles. In comparison to other sensors, PDA based sensor has several advantages. First, detection method is much simpler and faster because it does not require any labeling step in the experiment procedure. Second, significant color-transition from blue to red based upon external stimulus allows us the detection by naked eyes. Finally, it is also possible to perform quantitative analysis of the concentration of the chelating agent by measuring the colorimetric response. In this paper, five types of chelating agents were used, including EDTA, EGTA, NTA, DCTA and DTPA. Among them, EDTA and DCTA triggered especially strong color-transition. In conclusion, this study has led to a successful development of a color transition-based PDA sensor system for easy and rapid detection of chelating agents.

Immobilization of Heavy metal mechanism in Contaminated Coastal Sediment using Biostimulant Ball (BSB) with Modified Zeolite

  • Subha, Bakthavachallam;Woo, Jung-Hui;Song, Young-Chae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.130-131
    • /
    • 2016
  • Although many metals contaminated sediment from coastal area contain both anionic and cationic heavy metals, the current remediation technologies are not effective for stabilize heavy metals of both anionic and cationic elements from contaminated coastal region. the present work investigated the efficiency and mechanism of immobilization of Fe, Zn, Cr, Cu, Pb and Cd metal solutions in modified zeolite based biostimulant ball. Biostimulant ball containing acetate, nitrate and sulphate which are enhance the activity of marine microorganisms and it can act as electron donors and electron acceptors. Modified zeolite and chelating agent is greatly enhance the metal stabilization due to increased immobility of the analysed metals. The XRD, FT-IR and SEM of modified zeolite which cheating agents containing heavy metals were investigated. The results indicated that heavy metals could be effectively immobilized in modified zeolite and chelating agents in BSB added sediment. The immobilization of heavy metals in modified zeolite and chelating agents along with BSB could be due to stabilize of heavy metal cations. Immobilization of heavy metals using BSB with modified zeolite and chelating agent has lower cost effect and enhance the sediment quality.

  • PDF

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Copper Stress (생분해 되는 다양한 킬레이트가 구리에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to clean up metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environmentally friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Copper (Cu) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetracyclic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Cu to analyze the effect on root growth. Cys, His, and citrate strongly diminished the inhibitory effect of Cu on root growth of plants. The effect of oxalate was weak, and malate and succinate did not show significant effects. EDTA diminished and EDA promoted the inhibitory effects of Cu on root growth. These effects of chelating agents are correlated with Cu uptake into the roots. In conclusion, as biodegradable chelating agents, Cys, His, and citrate are good candidates for highly Cu-contaminated areas, while EDA can be useful in phytoextraction for Cu.

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Aluminum Phytoremediation (알루미늄 식물학적정화에 사용 가능하고 생분해 되는 킬레이트로 후보로서의 ethylenediamine)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1041-1046
    • /
    • 2010
  • Phytoextraction is a technique which uses plants to clean up metal-contaminated soils. Recently, various chelating agents were introduced into this technique to increase the bioavailability of metals in soils. Even though the technique is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Alunimum (Al) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Al to analyze the effect on plant growth. His slightly diminished the inhibitory effect of Al on root growth of plants, whereas, Cys, citrate, malate, oxalate, and succinate did not show significant effects. Both EDTA and EDA strongly diminished the inhibitory effect of Al on root growth. The effect of EDA is correlated with decreased Al uptake into the plants. In conclusion, as a biodegradable chelating agent, EDA is a good candidate for highly Al-contaminated areas.

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Mercury Stress (생분해되는 다양한 킬레이트들이 수은에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sangman
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • Phytoextraction is a technique that uses plants to remediate metal-contaminated soils. However, this technique cannot be applied in highly metal-contaminated areas, as plants cannot normally grow under such conditions. Therefore, this study investigated the introduction of various biodegradable chelating agents to increase the bioavailability of metals in highly metal-contaminated areas. Mercury (Hg) was selected as the target metal, while cysteine (Cys), histidine (His), malate, succinate, oxalate, citrate, and ethylenediamine (EDA) were used as biodegradable chelating agents. Plants were grown on agar media containing various chelating agents and Hg to analyze the effect on plant root growth. Cys and EDA were both found to diminish the inhibitory effect of Hg on plant root growth, whereas His, citrate, and ethylenediamine tetraacetic acid (EDTA) did not show any significant effects, and malate, succinate, and oxalate even promoted the inhibitory effect of Hg on plant root growth. Thus, Cys and EDA would seem to be promising biodegradable chelating agents for highly Hg-contaminated areas.