Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.7.1041

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Aluminum Phytoremediation  

Lee, Sang-Man (Division of Applied Biology and Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.20, no.7, 2010 , pp. 1041-1046 More about this Journal
Abstract
Phytoextraction is a technique which uses plants to clean up metal-contaminated soils. Recently, various chelating agents were introduced into this technique to increase the bioavailability of metals in soils. Even though the technique is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Alunimum (Al) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Al to analyze the effect on plant growth. His slightly diminished the inhibitory effect of Al on root growth of plants, whereas, Cys, citrate, malate, oxalate, and succinate did not show significant effects. Both EDTA and EDA strongly diminished the inhibitory effect of Al on root growth. The effect of EDA is correlated with decreased Al uptake into the plants. In conclusion, as a biodegradable chelating agent, EDA is a good candidate for highly Al-contaminated areas.
Keywords
Aluminum; chelate; metal; phytoextraction; phytoremediation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mathys, W. 1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant 40, 130-136.   DOI
2 Matsumoto, H. 2000. Cell biology of aluminium toxicity and tolerance in higher plants. International Rev. Cytol. 200, 1-46.   DOI
3 Mench, M., J. L. A. MorelGuckert, and B. Gruillet. 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39, 521-527.   DOI
4 Sagner, S., R. Kneer, G. Wanner, J. P. Cosson, B. Deus-Neumann, and M. H. Zenk. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry 47, 339-347.   DOI
5 Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. 49, 643-668.   DOI
6 Shen, Z. G., X. D. Li, C. C. Wang, H. M. Chen, and H. Chua. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31, 1893-1900.   DOI
7 Stillman, M. J., C. F. Shaw, and K. T. Suzuki. 1992. metallothioneins, synthesis, structure and properties of metallothioneins, phytochelatins and metal-thiolate complexes, VCH, New York
8 Wagner, G. J. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agro. 51, 173-212.   DOI
9 Wu, J., F. C. Hsu, and S. D. Cunningham. 1999. Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints. Environ. Sci. Technol. 33, 1898-1904.   DOI
10 Huang, J. W., J. J. Chen, W. R. Berti, and S. D. Cunningham. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800-805.   DOI
11 Kayser, A., K. Wenger, A. Keller, W. Attinger, H. R. Felix, S. K. Gupta, and R. Schulin. 2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ. Sci. Technol. 34, 1778-1783.   DOI
12 Kochian, L. V. 1995. Cellular mechanisms of Al toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 237-260.   DOI
13 Kos, B. and D. Lestan. 2003. Influence of biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253, 403-411.   DOI
14 MacDonald, T. and R. B. Martin. 1988. Al ion in biological systems. Trends Biol. Sci. 13, 15-19.   DOI
15 Krishnamurti, G. S. R., G. Cielinski, P. M. Huang, and K. C. J. vanRees. 1998. Kinetics of cadmium release from soils as influenced by organic acids: Implementation in cadmium availability. J. Environ. Qual. 26, 271-277.   DOI
16 Lombi, E., F. J. Zhao, S. J. Dunham, and S. P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919-1926.   DOI
17 Ma, J. F. and S. Hiradate. 2000. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench.) Planta 211, 355-360.   DOI
18 Cooper, E. M., J. T. Sims, J. W. Cunningham, J. W. Huang, and W. R. Berti. 1999. Chelate-assisted phytoextraction of lead from contaminated soils. J. Environ. Qual. 28, 1709-1719.   DOI
19 Cunningham, S. D. and D. W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol. 110, 715-719.
20 Ebbs, S. D. and L. V. Kochian. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32, 802-806.   DOI
21 Epstein, A. L., C. D. Gussman, M. J. Blaylock, U. Yermiyahu, J. W. Huang, Y. Kapulnik, and C. S. Orser. 1999. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208, 87-94.   DOI
22 Godbold, D. L., W. J. Horst, J. C. Collins, D. A. Thurman, and H. Marschner. 1984. Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J. Plant Physiol. 116, 59-69.   DOI
23 Kerkeb, L. and U. Kramer. 2003. The role of free histidine in xylem loading of nickel in Asylum lesbiacum and Brassica juncea. Plant Physiol. 131, 716-724.   DOI
24 Goyer, R. A. 1997. Toxic and essential metal interactions. Annu. Rev. Nutr. 17, 37-50.   DOI
25 Grcman, H., D. Vodnik, S. Velikonja-Bolta, and D. Lestan. 2003. Ethylenediaaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32, 500-506.   DOI
26 Hong, J. and P. N. Pintauro. 1996. Selective removal of heavy metals from contaminated kaolin by chelators. Water Air Soil Pollut. 87, 73-91.   DOI
27 Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860-865.   DOI