• 제목/요약/키워드: chassis dynamometer test

검색결과 88건 처리시간 0.035초

고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가 (The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents)

  • 이종태;임윤성;김형준;이성욱;이장훈;김종규
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

배기량과 차량중량에 따른 LPG 연료를 사용하는 승용 및 승합형 자동차 온실가스 배출 특성에 관한 연구 (A Study on Greenhouse Gas Emission Characteristics of Passenger Car and Van with LPG Fuel According to Displacement and Vehicle Weight)

  • 김형준;이종태;임윤성;윤창완;길지훈;홍유덕
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.497-502
    • /
    • 2018
  • In Korea, passenger car and van using LPG fuel including taxi constantly increased due to the high cost of fuel. Recently, the emission standard has continuously tightened in the world. In this investigation was conducted the greenhouse gas emission characteristics of LPG vehicles according to the displacement and weight. Exhaust emission characteristics of 13 test LPG vehicles from about 1.0 L to 3.0 L displacements were measured and analyzed by using chassis dynamometer and emission analyzer. It is revealed that the greenhouse gas emission was showed the increasing tendency as the displacement and curb weight increased. Also, greenhouse gas emission of SC03 driving cycle has highest value and that of HWFET driving cycle shows the lowest value.

도시운전모드 하에서 HEV 배터리 충.방전 전략 분석에 대한 연구 (A study of charge and discharge strategy analysis on HEV battery under urban dynamometer driving schedule)

  • 김성곤;정기윤;양인범;김덕진;이춘범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.247-249
    • /
    • 2007
  • Urban dynamometer driving schedule(FTP-75 mode) plays very significant role on automotive emission test, due to reference point. The overall system energy efficiency of a HEV(Hybrid Electric Vehicle) is highly dependent on the energy management strategy employed. An energy source is the heart of a HEV. In order to applicable to a vehicle component, it must be need to real world test result. But, the present state of things have numerous problems. In this paper, be studied performed based on HEV simulation software in virtual world and chassis dynamometer test in real world and the result make a comparative. Toyota Prius vehicle was adapted as a modeling and real testing to evaluate the hybrid components and energy balancing management. The point at issue is voltage and current analysis for HEV battery SOC(State of Charge), and verification for energy.

  • PDF

DC 저온플라즈마를 이용한 디젤엔진 유해 배기가스 저감에 관한 실험적 연구 (The Experimental Study on the Removal of Diesel Engine Pollutant Emissions Using DC Non-Thermal-Plasma(NTP))

  • 채재우;황재원;정지용;한정희;황화자;김석
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.35-42
    • /
    • 2001
  • The diesel engine exhaust gas is know as one of the causes to produce photochemical smog, which causes damage on environmental. However, due to the high thermal efficiency and low carbon dioxide emission, the usage of a diesel engine is prevailed. In this study, the DC non-thermal plasma technology used to the particulate matter (PM) aftertreatment. The exhaust gas characteristics and energy density were investigated on the dynamometer test bed and chassis dynamometer with CVS-75 mode in a passenger diesel car. It was reported that the smoke removal efficiency has around the 70% in the dynamometer test with 80W energy consumption and the PM removal efficiency has the 68% in the real car test. The NOx also reduced the 20% according to electrode type respectively. Considering these results, plasma technology is one of the ways to simultaneously removing method the particulate matter (PM) and NOx.

  • PDF

임의주행 사이클을 이용한 실제도로 주행 배출가스 특성 모사에 관한 연구 (A Study on the Characteristics of Simulated Real Driving Emissions by Using Random Driving Cycle)

  • 권석주;권상일;김형준;서영호;박성욱;전문수
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.454-462
    • /
    • 2016
  • This study was conducted in order to estimate the exhaust emissions analysis method of the real driving emission(RDE). The Association for Emissions Control by Catalyst(AECC) has developed a test procedure by using a random cycle method based on the chassis dynamometer. In order to confirm this approach in Korea, Euro 5(DPF), Euro 6(DPF + LNT), and Euro 6(DPF + SCR) were performed on three different vehicles to determine the exhaust gas characteristics of the random cycle, real-road driving test(PEMS), and emission certification driving mode(NEDC). Six different random cycle driving modes were generated by the vehicle specifications(e.g. curb weight, engine power, gear ratio, and maximum acceleration). The NOx emissions were increased in the NEDC, random cycle, and PEMS order in this study regardless of the test vehicles. The random cycle method has the advantage because it utilizes a chassis dynamometer in the laboratories for a repeatable data collection, and it allows any eminent emission improvement checked prior to a real-road driving test with PEMS.

자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구 (A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System)

  • 이진욱;조규백;김홍석;정용일
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

자동차의 연료별 연비 및 배출가스 특성 평가 (The vehicle's fuel economy and emission characteristics evaluation by fuel type)

  • 강은정;서영호
    • 융복합기술연구소 논문집
    • /
    • 제4권1호
    • /
    • pp.9-13
    • /
    • 2014
  • The purpose of this study is analysis to vehicle's fuel economy and emission gas characteristics by fuel type. The test vehicle were selected to similar weight and performance, the test vehicle was used three representative mode(CVS-75, HWFET and NEDC) in order to evaluation fuel economy and emission gas. For reference, environment pollution cost was calculated on the basis of the exhaust emissions occurred in the test in progress.

차량용 소형디젤엔진의 배기 재순환용 전자식 밸브 특성과 적용에 관한 연구 (A Study on the Characteristics and Application of E-EGR Valve for Light Duty Automotive Diesel Engine)

  • 송창훈;정용일;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.425-431
    • /
    • 2002
  • In this study the characteristics of E-EGR valve developed by electrical method were analysed and the feasibility of application to vehicles was evaluated. The engine of smart car applied for diesel passenger car of small-displacement size developed by common vehicle was used for this experiment. It was installed a 3-cylinder, $0.8\ell$, turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

소형디젤엔진용 E-EGR 밸브의 개발 및 차량적용에 관한 실험적 연구 (An Experimental Study on the Development & Application of E-EGR Valve for Light Duty Diesel Vehicle)

  • 송창훈;정용일;차경옥
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.203-209
    • /
    • 2002
  • 본 연구에서는 유니크에서 개발된 E-EGR 밸브의 특성을 분석하였으며, 차량적용의 가능성을 평가하였다. 메르세데스 벤츠에서 개발된 배기량 0.8리터급 소형디젤 승용차인 Smart cat가 본 실험에 사용되어졌다. 실험용 차량은 전자식 EGR 밸브가 장착된 3기통의 터보 과급식 차량이다. 테스트벤치에서 EGR 밸브의 성능을 비교 및 분석한 후 차대동력계상에서 EGR map과 CVS-75 시험결과를 통하여 전자식 EGR 밸브의 차량적용 가능성을 여부를 수행하였다.

소형디젤엔진의 배기가스 재순환용 전자식 밸브의 특성해석 및 차량적용 평가 (Evaluation of E-EGR Valve for Light Duty Diesel Vehicle)

  • 송창훈;이진욱;정용일;양갑진;이창훈;이현우;차경옥
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.185-192
    • /
    • 2001
  • In this study the characteristics of E-EGR valve developed by UNICK were analyzed and the feasibility of application to vehicles were evaluated. Smart car(3L/100km, cdi version) and engine which is small-displacement size, 0.8-liter, of diesel passenger car developed from Mercedes-Benz were used for this experiment. It was installed a 3-cylinder turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance under test benchs, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

  • PDF