• Title/Summary/Keyword: chassis

Search Result 472, Processing Time 0.024 seconds

Scheme and Movement/Tension Control of Working Robot for the Installation of an Overhead Power Cable (1) (전력케이블 가설용 작업로봇의 구성과 이동/장력 혼합제어에 관한 연구(1))

  • Choi, Dong Soo;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.28-34
    • /
    • 2016
  • When a electric power cable is installed in the air for newly or exchanged working, it is necessary at all time to hold a constant tension for an overhead power cable. And also a pendanted power cable is an extreme job to have work in a high sky. For this reason, the objective of this paper developments working robot for preventing disaster that tension of cable installed automatically power cable to hold a constant. So the working robot works at all the time two tasks for mobil and tension it come into a inference between two tasks, control is difficult. Control methode needs to suppress inference of two tasks. In this paper, for installation of overhead power cable, the scheme and control methode of working robot is presented. the robot work at a same time tow tasks that have hold a constant tension of the power cable and move a constant place while unfasten a winding cable at a drum on a chassis. Working robot consist of three parts with mobile system, tension system and control part. As it is applied the feedback/feedforward control, methode of hybrid control is established to suppress that interference come into between two tasks. The simulation programs is made out using models of mobil and tension system, and a proposed controllers. In accordance with simulation, the model of each systems is discussed to make out proper. And also parameters of controllers is selected a suitable value and the driving performance of robot is evaluated.

Study on Construction of Simulation Model based on Analysis of Container Handling Database - A case of HICCT in Japan - (컨테이너터미널의 하역 데이터베이스 분석에 의한 하역시뮬레이션 모델 구축에 관한 연구 - 일본의 HICCT를 중심으로 -)

  • Kim, Hwa-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.717-723
    • /
    • 2007
  • In recent years, the transportation sector has been undergoing very rapid and multifarious changes due to the M&A, alliances between shipping companies, introduction of larger container ship as it cost reduction measure and the application of integrated logistics to satisfy the needs of customers. Therefore, container terminal is required adequate terminal facilities, sufficient channel depth, efficient handling and low cost of port fees and dues. The purpose of this paper is for functional assessment of efficient container terminal. Firstly, the container operating process information about yard equipment and chassis is extracted through the analysis of practical daily work report of container terminal. Also, the formulae of skill factor and troubles of operator on transfer crane are defined. Lastly, container handling simulation model which consideration of skill factor and trouble of operator is proposed by Petri network model.

A Study on Hazardous Air Pollutant Emissions From Diesel Engines Utilizing DME Fuel (DME를 이용한 경유자동차의 유해대기오염물질 발생 특성 연구)

  • Lim, Yun-Sung;Seo, Choong-Youl;Kwack, Soon-Chul;Lee, Jong-Tae;Park, Jung-Min;Kang, Dae-Il;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Duk;Lim, Yui-Soon;Dong, Jong-In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • Recently, lots of researchers have been attracted to develop various alternative fuels and to use renewable fuels in order to solve the exhaust emission problems. DME (Dimethylether) is synthetic fuel, and can be produced from natural gas, coal and biomass. The emission is clean because it contains little sulfur and aromatic components In this study, the fuel was tested to investigate the applicability as an alternative fuel for diesel. This study was carried out by comparing the exhaust emissions and performance of diesel engine with DME, ULSD (ultra low sulfur diesel), LSD (low sulfur diesel) respectively. In order to measure regulated emissions, CO, $NO_{3}$, HC from vehicle different fuel types were used on chassis dynamometer CVS (constant volume sampler)-75 mode and EPA TO-I1A method was chosen for aldehydes analysis.

NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a and 6b Regulations on Off-cycles (Off-cycle에서 Euro 6a 및 6b 규제 만족 디젤 자동차의 NOx 배출 특성)

  • Kim, Sung-Woo;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.68-78
    • /
    • 2017
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. Futhermore, some manufacturers were disclosed using a defeat device for meeting the regulation illegally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission(RDE) regulation and the test method that will be applied after 2017. Also, the US has used the test equipment(PEMS) to detect a defeat device. In this paper, for the regulation to make a soft landing in Korea, 4 diesel passenger cars which met Euro 6a~6b regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles(FTP, US06, SC03, HWFET and CADC) and several ambient condition(-7 and $14^{\circ}C$) as well as certification mode(NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.

Study of Fuel Consumption Characteristics and Regenerative Braking Recovery Rate in a TMED Type Parallel Hybrid Electric Vehicle (TMED방식 병렬형 하이브리드 차량의 회생제동 회수율 및 연비 특성 연구)

  • Chung, Jin Ho;Kim, Jin Su;Kim, Ju Whan;Lee, Jin Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.485-494
    • /
    • 2016
  • In this work, we conducted a study of fuel consumption characteristics and regenerative braking recovery rate by conducting an experiment using a TMED type parallel hybrid electric vehicle. As regenerative braking technology is considered essential to improve the energy efficiency of the hybrid vehicle, it is necessary to conduct research on the regenerative braking system. Therefore, the electrical characteristics, current balance, and fuel consumption were investigated using an EC type chassis dynamometer with experimental conditions as per IM240 mode. From the results, it was observed that when the initial SOC condition was lower, the engine operating time of the hybrid vehicle increased, and the energy efficiency decreased. While operating in the driving mode characteristics condition and the driving characteristics condition, the difference in the average fuel consumption was not significant. However, after completion of the experiment, there was a difference in the engine operation.

Experimental Evaluation of Direct Measurement for Excitation Forces Acting on the Hard-points of Suspension System to Predict Road-noise Performance (로드노이즈 성능 예측을 위한 현가장치 하드포인트의 가진력 직접 측정법에 대한 실험적 평가)

  • Kang, Yeon June;Kim, Heesoo;Song, David P.;Ih, Kang-Duck;Kim, HyoungGun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • NVH engineering has become a hot issue due to radical technology changes and development in automotive industry since customers' expectations and needs for their vehicle is taken to a higher level. However, the source identification and quantification of the road noise within a vehicle is still not at the level where it needs to be to meet their expectations due to its' complex transfer path and difficulties in path optimization. The primary focus of this research is on direct force obtaining method at suspension hard points using suspension test rig. Directly obtained forces at suspension to body mounting points are critical and crucial for determining the effects of design changes of the suspension has on road noise performance. Direct force obtaining method has its limitation in sensor installation within an actual vehicle therefore, many has been indirectly calculating forces using full matrix inversion method or dynamic stiffness method. In this study, to circumvent this limitation, a suspension rig is used. Then, the suspension rig is verified through a comparative analysis of its dynamic behavior between the actual vehicle by cleat test on chassis dynamometer.

Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine (EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향)

  • Heo, Hyung-Seok;Lee, Dong-Hyuk;Kang, Tae-Gu;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.

A Study on Characteristics of Methane Emissions from Gasoline Passenger Cars (휘발유 자동차의 메탄(CH4) 배출특성에 관한 연구)

  • Jeon M.S.;Ryu J.H.;Lyu Y.S.;Kim J.C.;Lim C.S.;Kim D.W.;Jeong S.W.;Cho S.Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.649-655
    • /
    • 2005
  • Automotive exhaust is suspected to be one of the main reasons of the rapid increase in greenhouse effect gases in ambient air. Although methane emissions are generally orders of magnitude lower than emissions of $CO_{2}$, the global warming potential (GWP) of methane is greater than that of $CO_{2}$. The environmental impact of methane emissions from vehicles is negligible and is likely to remain so for the foreseeable future. In this study, in order to investigate greenhouse gas emission characteristics from gasoline passenger cars, 20 vehicles were tested on the chassis dynamometer and methane emissions were measured. The emission characteristics by model year, mileage, vehicle speed were discussed. Test mode is CVS-15 mode that have been used to regulate for light-duty vehicle in Korea. It was found that $CH_{4}$ emissions showed higher for cold start, old model year and long mileage than hot start, new model year and short mileage, respectively. These results were compared with IPCC emission factors and the overall our results were anticipated to contribute for domestic greenhouse gas emissions calculation.

Evaluations for Representativeness of Light-Duty Diesel Vehicles' Fuel-based Emission Factors on Vehicle Operating Conditions (연료 소비량에 기반한 소형 경유차 대기오염물질 배출계수의 운전조건별 대표성 평가)

  • Lee, Taewoo;Kwon, Sangil;Son, Jihwan;Kim, Jiyoung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.745-756
    • /
    • 2013
  • The purpose of this study is to evaluate representativeness of fuel-based emission factors. Twelve light-duty diesel vehicles which meet Euro-3 to 5 legislative emission limits were selected for emission tests. Second-by-second modal emission rates of vehicles were measured on a standard laboratory chassis dynamometer system. An off-cycle driving cycle was developed as a representative Korean real-world on-road driving cycle. Fuel-based emission factors were developed for short trip segments that involved in the selected driving cycle. Each segment was defined to have unit travel distance, which is 1 km, and characterized by its average speed and Relative Positive Acceleration (RPA). Fuel-based $NO_x$ emission factors demonstrate relatively good representativeness in terms of vehicle operation conditions. $NO_x$ emission factors are estimated to be within ${\pm}20%$ of area-wide emission factor under more than 40% of total driving situations. This result implies that the fuel-based $NO_x$ emission factor could be practically implemented into the on-road emission management strategies, such as a remote sensing device (RSD). High emitting vehicles as well as high emitting operating conditions heavily affect on the mean values and distributions of CO and THC emission factors. Few high emitting conditions are pulling up the mean value and biasing the distributions, which weaken representativeness of fuel-based CO and THC emission factors.

Effect of Payload on Fuel Consumption and Emission of Light Duty Freight Truck during Acceleration Driving (소형 화물 차량의 적재량이 가속 주행 시의 연비 및 오염물질 배출에 미치는 영향)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Jeon, Sang-Jin;Park, Jun-Hong;Lee, Jong-Tae;Hong, Ji-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • The effect of payload on fuel consumption and emission of light duty freight truck during acceleration driving has been analyzed. Running tests were carried out with various payload conditions on chassis dynamometer. A typical driving pattern for urban cities was used. Real time emission measurement systems for gaseous and soot emission were utilized to investigate the real time dynamic of fuel use and exhaust emissions. It was observed that fuel use and pollutant emissions were increased as payload was increased. Under the same payload condition, the increased amount of acceleration driving is much higher than that of steady state driving. The results demonstrated the advantages of eco-driving, which is an environmentally friendly driving manner, could be emphasized in heavier payload condition. Inertial tractive power was introduced for considering the parameters affecting emission during acceleration driving, which are speed, acceleration and payload. Fuel use and emission in various driving conditions were expressed as functions of inertial tractive power. The estimated result by these functions well predicted measured result within 10 % deviation.